|
from torch import nn |
|
|
|
|
|
class SELayer(nn.Module): |
|
def __init__(self, channel, reduction=16): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction, bias=False), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(channel // reduction, channel, bias=False), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y.expand_as(x) |
|
|
|
|
|
class SEBlock(nn.Module): |
|
def __init__(self, channels, reduction=16, |
|
use_conv=True, mid_activation=nn.ReLU(inplace=True), out_activation=nn.Sigmoid()): |
|
super(SEBlock, self).__init__() |
|
self.use_conv = use_conv |
|
mid_channels = channels // reduction |
|
|
|
self.pool = nn.AdaptiveAvgPool2d(output_size=1) |
|
if use_conv: |
|
self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, bias=True) |
|
else: |
|
self.fc1 = nn.Linear(channels, mid_channels) |
|
self.activ = mid_activation |
|
if use_conv: |
|
self.conv2 = nn.Conv2d(mid_channels, channels, kernel_size=1, bias=True) |
|
else: |
|
self.fc2 = nn.Linear(mid_channels, channels) |
|
self.sigmoid = out_activation |
|
|
|
def forward(self, x): |
|
w = self.pool(x) |
|
if not self.use_conv: |
|
w = w.view(x.size(0), -1) |
|
w = self.conv1(w) if self.use_conv else self.fc1(w) |
|
w = self.activ(w) |
|
w = self.conv2(w) if self.use_conv else self.fc2(w) |
|
w = self.sigmoid(w) |
|
if not self.use_conv: |
|
w = w.unsqueeze(2).unsqueeze(3) |
|
x = x * w |
|
return x |