|
import torch |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
from torch import nn |
|
|
|
from scipy.optimize import linear_sum_assignment |
|
from torch.cuda.amp import custom_fwd, custom_bwd |
|
|
|
|
|
def box_area(boxes): |
|
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) |
|
|
|
|
|
|
|
def box_iou(boxes1, boxes2): |
|
area1 = box_area(boxes1) |
|
area2 = box_area(boxes2) |
|
|
|
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) |
|
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) |
|
|
|
wh = (rb - lt).clamp(min=0) |
|
inter = wh[:, :, 0] * wh[:, :, 1] |
|
|
|
union = area1[:, None] + area2 - inter |
|
|
|
iou = inter / union |
|
return iou, union |
|
|
|
|
|
def generalized_box_iou(boxes1, boxes2): |
|
""" |
|
Generalized IoU from https://giou.stanford.edu/ |
|
|
|
The boxes should be in [x0, y0, x1, y1] format |
|
|
|
Returns a [N, M] pairwise matrix, where N = len(boxes1) |
|
and M = len(boxes2) |
|
""" |
|
|
|
|
|
|
|
|
|
iou, union = box_iou(boxes1, boxes2) |
|
|
|
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) |
|
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) |
|
|
|
wh = (rb - lt).clamp(min=0) |
|
area = wh[:, :, 0] * wh[:, :, 1] |
|
|
|
return iou - (area - union) / area |
|
|
|
|
|
def dice_loss(inputs, targets, num_boxes): |
|
""" |
|
Compute the DICE loss, similar to generalized IOU for masks |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
""" |
|
inputs = inputs.sigmoid() |
|
inputs = inputs.flatten(1) |
|
numerator = 2 * (inputs * targets).sum(1) |
|
denominator = inputs.sum(-1) + targets.sum(-1) |
|
loss = 1 - (numerator + 1) / (denominator + 1) |
|
return loss.sum() / num_boxes |
|
|
|
|
|
def sigmoid_focal_loss(inputs: torch.Tensor, targets: torch.Tensor, alpha: float = -1, gamma: float = 2, reduction: str = "none"): |
|
""" |
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
alpha: (optional) Weighting factor in range (0,1) to balance |
|
positive vs negative examples. Default = -1 (no weighting). |
|
gamma: Exponent of the modulating factor (1 - p_t) to |
|
balance easy vs hard examples. |
|
reduction: 'none' | 'mean' | 'sum' |
|
'none': No reduction will be applied to the output. |
|
'mean': The output will be averaged. |
|
'sum': The output will be summed. |
|
Returns: |
|
Loss tensor with the reduction option applied. |
|
""" |
|
p = torch.sigmoid(inputs) |
|
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
p_t = p * targets + (1 - p) * (1 - targets) |
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
if alpha >= 0: |
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
loss = alpha_t * loss |
|
|
|
if reduction == "mean": |
|
loss = loss.mean() |
|
elif reduction == "sum": |
|
loss = loss.sum() |
|
|
|
return loss |
|
|
|
|
|
sigmoid_focal_loss_jit = torch.jit.script( |
|
sigmoid_focal_loss |
|
) |
|
|
|
|
|
class HungarianMatcher(nn.Module): |
|
"""This class computes an assignment between the targets and the predictions of the network |
|
|
|
For efficiency reasons, the targets don't include the no_object. Because of this, in general, |
|
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, |
|
while the others are un-matched (and thus treated as non-objects). |
|
""" |
|
|
|
def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, |
|
use_focal: bool = False, focal_loss_alpha: float = 0.25, focal_loss_gamma: float = 2.0, |
|
**kwargs): |
|
"""Creates the matcher |
|
|
|
Params: |
|
cost_class: This is the relative weight of the classification error in the matching cost |
|
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost |
|
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost |
|
""" |
|
super().__init__() |
|
self.cost_class = cost_class |
|
self.cost_bbox = cost_bbox |
|
self.cost_giou = cost_giou |
|
self.use_focal = use_focal |
|
if self.use_focal: |
|
self.focal_loss_alpha = focal_loss_alpha |
|
self.focal_loss_gamma = focal_loss_gamma |
|
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" |
|
|
|
@torch.no_grad() |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(self, outputs, targets): |
|
""" Performs the matching |
|
|
|
Params: |
|
outputs: This is a dict that contains at least these entries: |
|
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits |
|
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates |
|
|
|
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: |
|
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth |
|
objects in the target) containing the class labels |
|
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates |
|
|
|
Returns: |
|
A list of size batch_size, containing tuples of (index_i, index_j) where: |
|
- index_i is the indices of the selected predictions (in order) |
|
- index_j is the indices of the corresponding selected targets (in order) |
|
For each batch element, it holds: |
|
len(index_i) = len(index_j) = min(num_queries, num_target_boxes) |
|
""" |
|
bs, num_queries = outputs["pred_logits"].shape[:2] |
|
|
|
|
|
if self.use_focal: |
|
out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() |
|
out_bbox = outputs["pred_boxes"].flatten(0, 1) |
|
else: |
|
out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) |
|
out_bbox = outputs["pred_boxes"].flatten(0, 1) |
|
|
|
|
|
tgt_ids = torch.cat([v["labels"] for v in targets]) |
|
tgt_bbox = torch.cat([v["boxes_xyxy"] for v in targets]) |
|
|
|
|
|
|
|
|
|
if self.use_focal: |
|
|
|
alpha = self.focal_loss_alpha |
|
gamma = self.focal_loss_gamma |
|
neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) |
|
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) |
|
cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] |
|
else: |
|
cost_class = -out_prob[:, tgt_ids] |
|
|
|
|
|
image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets]) |
|
image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1) |
|
image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets]) |
|
|
|
out_bbox_ = out_bbox / image_size_out |
|
tgt_bbox_ = tgt_bbox / image_size_tgt |
|
cost_bbox = torch.cdist(out_bbox_, tgt_bbox_, p=1) |
|
|
|
|
|
|
|
cost_giou = -generalized_box_iou(out_bbox, tgt_bbox) |
|
|
|
|
|
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou |
|
C = C.view(bs, num_queries, -1).cpu() |
|
|
|
C[torch.isnan(C)] = 0.0 |
|
C[torch.isinf(C)] = 0.0 |
|
|
|
sizes = [len(v["boxes"]) for v in targets] |
|
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] |
|
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] |
|
|
|
|
|
class SetCriterion(nn.Module): |
|
""" |
|
The process happens in two steps: |
|
1) we compute hungarian assignment between ground truth boxes and the outputs of the model |
|
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) |
|
""" |
|
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, |
|
use_focal, focal_loss_alpha=0.25, focal_loss_gamma=2.0): |
|
""" Create the criterion. |
|
Parameters: |
|
num_classes: number of object categories, omitting the special no-object category |
|
matcher: module able to compute a matching between targets and proposals |
|
weight_dict: dict containing as key the names of the losses and as values their relative weight. |
|
eos_coef: relative classification weight applied to the no-object category |
|
losses: list of all the losses to be applied. See get_loss for list of available losses. |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.matcher = matcher |
|
self.weight_dict = weight_dict |
|
self.eos_coef = eos_coef |
|
self.losses = losses |
|
self.use_focal = use_focal |
|
if self.use_focal: |
|
self.focal_loss_alpha = focal_loss_alpha |
|
self.focal_loss_gamma = focal_loss_gamma |
|
else: |
|
empty_weight = torch.ones(self.num_classes + 1) |
|
empty_weight[-1] = self.eos_coef |
|
self.register_buffer('empty_weight', empty_weight) |
|
|
|
def loss_labels(self, outputs, targets, indices, num_boxes, log=False): |
|
"""Classification loss (NLL) |
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] |
|
""" |
|
assert 'pred_logits' in outputs |
|
src_logits = outputs['pred_logits'] |
|
|
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
|
|
if self.use_focal: |
|
src_logits = src_logits.flatten(0, 1) |
|
|
|
target_classes = target_classes.flatten(0, 1) |
|
pos_inds = torch.nonzero(target_classes != self.num_classes, as_tuple=True)[0] |
|
labels = torch.zeros_like(src_logits) |
|
labels[pos_inds, target_classes[pos_inds]] = 1 |
|
|
|
class_loss = sigmoid_focal_loss_jit( |
|
src_logits, |
|
labels, |
|
alpha=self.focal_loss_alpha, |
|
gamma=self.focal_loss_gamma, |
|
reduction="sum", |
|
) / num_boxes |
|
losses = {'loss_ce': class_loss} |
|
else: |
|
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) |
|
losses = {'loss_ce': loss_ce} |
|
|
|
return losses |
|
|
|
def loss_boxes(self, outputs, targets, indices, num_boxes): |
|
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss |
|
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] |
|
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. |
|
""" |
|
assert 'pred_boxes' in outputs |
|
idx = self._get_src_permutation_idx(indices) |
|
src_boxes = outputs['pred_boxes'][idx] |
|
target_boxes = torch.cat([t['boxes_xyxy'][i] for t, (_, i) in zip(targets, indices)], dim=0) |
|
|
|
losses = {} |
|
loss_giou = 1 - torch.diag(generalized_box_iou(src_boxes, target_boxes)) |
|
losses['loss_giou'] = loss_giou.sum() / num_boxes |
|
|
|
image_size = torch.cat([v["image_size_xyxy_tgt"] for v in targets]) |
|
src_boxes_ = src_boxes / image_size |
|
target_boxes_ = target_boxes / image_size |
|
|
|
loss_bbox = F.l1_loss(src_boxes_, target_boxes_, reduction='none') |
|
losses['loss_bbox'] = loss_bbox.sum() / num_boxes |
|
|
|
return losses |
|
|
|
def _get_src_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) |
|
src_idx = torch.cat([src for (src, _) in indices]) |
|
return batch_idx, src_idx |
|
|
|
def _get_tgt_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) |
|
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) |
|
return batch_idx, tgt_idx |
|
|
|
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): |
|
loss_map = { |
|
'labels': self.loss_labels, |
|
'boxes': self.loss_boxes, |
|
} |
|
assert loss in loss_map, f'do you really want to compute {loss} loss?' |
|
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) |
|
|
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(self, outputs, targets, *argrs, **kwargs): |
|
""" This performs the loss computation. |
|
Parameters: |
|
outputs: dict of tensors, see the output specification of the model for the format |
|
targets: list of dicts, such that len(targets) == batch_size. |
|
The expected keys in each dict depends on the losses applied, see each loss' doc |
|
""" |
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} |
|
|
|
|
|
indices = self.matcher(outputs_without_aux, targets) |
|
|
|
|
|
num_boxes = sum(len(t["labels"]) for t in targets) |
|
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) |
|
if dist.is_available() and dist.is_initialized(): |
|
torch.distributed.all_reduce(num_boxes) |
|
word_size = dist.get_world_size() |
|
else: |
|
word_size = 1 |
|
num_boxes = torch.clamp(num_boxes / word_size, min=1).item() |
|
|
|
|
|
losses = {} |
|
for loss in self.losses: |
|
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) |
|
|
|
|
|
if 'aux_outputs' in outputs: |
|
for i, aux_outputs in enumerate(outputs['aux_outputs']): |
|
indices = self.matcher(aux_outputs, targets) |
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs = {'log': False} |
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) |
|
l_dict = {k + f'_{i}': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
return losses |
|
|
|
|