|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
|
|
from maskrcnn_benchmark import _C |
|
|
|
|
|
|
|
class _SigmoidFocalLoss(Function): |
|
@staticmethod |
|
def forward(ctx, logits, targets, gamma, alpha): |
|
ctx.save_for_backward(logits, targets) |
|
num_classes = logits.shape[1] |
|
ctx.num_classes = num_classes |
|
ctx.gamma = gamma |
|
ctx.alpha = alpha |
|
|
|
losses = _C.sigmoid_focalloss_forward( |
|
logits, targets, num_classes, gamma, alpha |
|
) |
|
return losses |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, d_loss): |
|
logits, targets = ctx.saved_tensors |
|
num_classes = ctx.num_classes |
|
gamma = ctx.gamma |
|
alpha = ctx.alpha |
|
d_loss = d_loss.contiguous() |
|
d_logits = _C.sigmoid_focalloss_backward( |
|
logits, targets, d_loss, num_classes, gamma, alpha |
|
) |
|
return d_logits, None, None, None, None |
|
|
|
|
|
sigmoid_focal_loss_cuda = _SigmoidFocalLoss.apply |
|
|
|
|
|
def sigmoid_focal_loss_cpu(logits, targets, gamma, alpha): |
|
num_classes = logits.shape[1] |
|
dtype = targets.dtype |
|
device = targets.device |
|
class_range = torch.arange(1, num_classes + 1, dtype=dtype, device=device).unsqueeze(0) |
|
|
|
t = targets.unsqueeze(1) |
|
p = torch.sigmoid(logits) |
|
term1 = (1 - p) ** gamma * torch.log(p) |
|
term2 = p ** gamma * torch.log(1 - p) |
|
return -(t == class_range).float() * term1 * alpha - ((t != class_range) * (t >= 0)).float() * term2 * (1 - alpha) |
|
|
|
|
|
class SigmoidFocalLoss(nn.Module): |
|
def __init__(self, gamma, alpha): |
|
super(SigmoidFocalLoss, self).__init__() |
|
self.gamma = gamma |
|
self.alpha = alpha |
|
|
|
def forward(self, logits, targets): |
|
if logits.is_cuda: |
|
loss_func = sigmoid_focal_loss_cuda |
|
else: |
|
loss_func = sigmoid_focal_loss_cpu |
|
|
|
loss = loss_func(logits, targets, self.gamma, self.alpha) |
|
return loss.sum() |
|
|
|
def __repr__(self): |
|
tmpstr = self.__class__.__name__ + "(" |
|
tmpstr += "gamma=" + str(self.gamma) |
|
tmpstr += ", alpha=" + str(self.alpha) |
|
tmpstr += ")" |
|
return tmpstr |
|
|
|
|
|
def token_sigmoid_softmax_focal_loss(pred_logits, targets, alpha, gamma, text_mask=None): |
|
|
|
|
|
|
|
assert (targets.dim() == 3) |
|
assert (pred_logits.dim() == 3) |
|
|
|
|
|
targets = targets.float() |
|
target_num = targets.sum(-1) + 1e-8 |
|
targets = targets / target_num.unsqueeze(-1) |
|
|
|
if text_mask is not None: |
|
|
|
assert (text_mask.dim() == 2) |
|
text_mask[:, -1] = 1 |
|
text_mask = (text_mask > 0).unsqueeze(1).repeat(1, pred_logits.size(1), 1) |
|
pred_logits = pred_logits.masked_fill(~text_mask, -1000000) |
|
|
|
out_prob = pred_logits.softmax(-1) |
|
|
|
filled_targets = targets.clone() |
|
filled_targets[filled_targets == 0] = 1.0 |
|
|
|
weight = torch.clamp(targets - out_prob, min=0.001) / filled_targets |
|
weight = torch.pow(weight, gamma) |
|
|
|
loss_ce = - targets * weight * pred_logits.log_softmax( |
|
-1) |
|
return loss_ce |
|
|
|
|
|
def token_sigmoid_binary_focal_loss_v2(pred_logits, targets, alpha, gamma, text_mask=None): |
|
assert (targets.dim() == 3) |
|
assert (pred_logits.dim() == 3) |
|
|
|
if text_mask is not None: |
|
assert (text_mask.dim() == 2) |
|
|
|
|
|
out_prob = pred_logits.sigmoid() |
|
out_prob_neg_pos = torch.stack([1 - out_prob, out_prob], dim=-1) + 1e-8 |
|
weight = torch.pow(-out_prob_neg_pos + 1.0, gamma) |
|
|
|
focal_zero = - weight[:, :, :, 0] * torch.log(out_prob_neg_pos[:, :, :, 0]) * ( |
|
1 - alpha) |
|
focal_one = - weight[:, :, :, 1] * torch.log(out_prob_neg_pos[:, :, :, 1]) * alpha |
|
focal = torch.stack([focal_zero, focal_one], dim=-1) |
|
loss_ce = torch.gather(focal, index=targets.long().unsqueeze(-1), dim=-1) |
|
return loss_ce |
|
|
|
|
|
def token_sigmoid_binary_focal_loss(pred_logits, targets, alpha, gamma, text_mask=None): |
|
|
|
|
|
""" |
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
alpha: (optional) Weighting factor in range (0,1) to balance |
|
positive vs negative examples. Default = -1 (no weighting). |
|
gamma: Exponent of the modulating factor (1 - p_t) to |
|
balance easy vs hard examples. |
|
Returns: |
|
Loss tensor with the reduction option applied. |
|
""" |
|
assert (targets.dim() == 3) |
|
assert (pred_logits.dim() == 3) |
|
|
|
bs, n, _ = pred_logits.shape |
|
if text_mask is not None: |
|
assert (text_mask.dim() == 2) |
|
text_mask = (text_mask > 0).unsqueeze(1) |
|
text_mask = text_mask.repeat(1, pred_logits.size(1), 1) |
|
pred_logits = torch.masked_select(pred_logits, text_mask) |
|
targets = torch.masked_select(targets, text_mask) |
|
|
|
|
|
|
|
|
|
p = torch.sigmoid(pred_logits) |
|
ce_loss = F.binary_cross_entropy_with_logits(pred_logits, targets, reduction="none") |
|
p_t = p * targets + (1 - p) * (1 - targets) |
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
if alpha >= 0: |
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
loss = alpha_t * loss |
|
|
|
return loss |
|
|
|
|
|
class TokenSigmoidFocalLoss(nn.Module): |
|
def __init__(self, alpha, gamma): |
|
super(TokenSigmoidFocalLoss, self).__init__() |
|
self.alpha = alpha |
|
self.gamma = gamma |
|
|
|
def forward(self, logits, targets, text_masks=None, version="binary", **kwargs): |
|
if version == "binary": |
|
loss_func = token_sigmoid_binary_focal_loss |
|
elif version == "softmax": |
|
loss_func = token_sigmoid_softmax_focal_loss |
|
elif version == "binaryv2": |
|
loss_func = token_sigmoid_binary_focal_loss_v2 |
|
else: |
|
raise NotImplementedError |
|
loss = loss_func(logits, targets, self.alpha, self.gamma, text_masks, **kwargs) |
|
return loss.sum() |
|
|
|
def __repr__(self): |
|
tmpstr = self.__class__.__name__ + "(" |
|
tmpstr += "gamma=" + str(self.gamma) |
|
tmpstr += ", alpha=" + str(self.alpha) |
|
tmpstr += ")" |
|
return tmpstr |
|
|