|
from collections import OrderedDict |
|
|
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.modeling import registry |
|
from maskrcnn_benchmark.modeling.make_layers import conv_with_kaiming_uniform |
|
from maskrcnn_benchmark.layers import DropBlock2D, DyHead |
|
from . import fpn as fpn_module |
|
from . import bifpn |
|
from . import resnet |
|
from . import efficientnet |
|
from . import efficientdet |
|
from . import swint |
|
from . import swint_v2 |
|
from . import swint_vl |
|
from . import swint_v2_vl |
|
|
|
|
|
@registry.BACKBONES.register("R-50-C4") |
|
@registry.BACKBONES.register("R-50-C5") |
|
@registry.BACKBONES.register("R-101-C4") |
|
@registry.BACKBONES.register("R-101-C5") |
|
def build_resnet_backbone(cfg): |
|
body = resnet.ResNet(cfg) |
|
model = nn.Sequential(OrderedDict([("body", body)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("R-50-RETINANET") |
|
@registry.BACKBONES.register("R-101-RETINANET") |
|
def build_resnet_c5_backbone(cfg): |
|
body = resnet.ResNet(cfg) |
|
model = nn.Sequential(OrderedDict([("body", body)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("SWINT-FPN-RETINANET") |
|
def build_retinanet_swint_fpn_backbone(cfg): |
|
""" |
|
Args: |
|
cfg: a detectron2 CfgNode |
|
|
|
Returns: |
|
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. |
|
""" |
|
if cfg.MODEL.SWINT.VERSION == "v1": |
|
body = swint.build_swint_backbone(cfg) |
|
elif cfg.MODEL.SWINT.VERSION == "v2": |
|
body = swint_v2.build_swint_backbone(cfg) |
|
elif cfg.MODEL.SWINT.VERSION == "vl": |
|
body = swint_vl.build_swint_backbone(cfg) |
|
elif cfg.MODEL.SWINT.VERSION == "v2_vl": |
|
body = swint_v2_vl.build_swint_backbone(cfg) |
|
|
|
in_channels_stages = cfg.MODEL.SWINT.OUT_CHANNELS |
|
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
in_channels_p6p7 = out_channels |
|
fpn = fpn_module.FPN( |
|
in_channels_list=[ |
|
0, |
|
in_channels_stages[-3], |
|
in_channels_stages[-2], |
|
in_channels_stages[-1], |
|
], |
|
out_channels=out_channels, |
|
conv_block=conv_with_kaiming_uniform( |
|
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU |
|
), |
|
top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), |
|
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, |
|
use_spp=cfg.MODEL.FPN.USE_SPP, |
|
use_pan=cfg.MODEL.FPN.USE_PAN, |
|
return_swint_feature_before_fusion=cfg.MODEL.FPN.RETURN_SWINT_FEATURE_BEFORE_FUSION |
|
) |
|
if cfg.MODEL.FPN.USE_DYHEAD: |
|
dyhead = DyHead(cfg, out_channels) |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) |
|
else: |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("SWINT-FPN") |
|
def build_swint_fpn_backbone(cfg): |
|
""" |
|
Args: |
|
cfg: a detectron2 CfgNode |
|
|
|
Returns: |
|
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. |
|
""" |
|
if cfg.MODEL.SWINT.VERSION == "v1": |
|
body = swint.build_swint_backbone(cfg) |
|
elif cfg.MODEL.SWINT.VERSION == "v2": |
|
body = swint_v2.build_swint_backbone(cfg) |
|
elif cfg.MODEL.SWINT.VERSION == "vl": |
|
body = swint_vl.build_swint_backbone(cfg) |
|
elif cfg.MODEL.SWINT.VERSION == "v2_vl": |
|
body = swint_v2_vl.build_swint_backbone(cfg) |
|
|
|
in_channels_stages = cfg.MODEL.SWINT.OUT_CHANNELS |
|
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
fpn = fpn_module.FPN( |
|
in_channels_list=[ |
|
in_channels_stages[-4], |
|
in_channels_stages[-3], |
|
in_channels_stages[-2], |
|
in_channels_stages[-1], |
|
], |
|
out_channels=out_channels, |
|
conv_block=conv_with_kaiming_uniform( |
|
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU |
|
), |
|
top_blocks=fpn_module.LastLevelMaxPool(), |
|
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, |
|
use_spp=cfg.MODEL.FPN.USE_SPP, |
|
use_pan=cfg.MODEL.FPN.USE_PAN |
|
) |
|
if cfg.MODEL.FPN.USE_DYHEAD: |
|
dyhead = DyHead(cfg, out_channels) |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) |
|
else: |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("CVT-FPN-RETINANET") |
|
def build_retinanet_cvt_fpn_backbone(cfg): |
|
""" |
|
Args: |
|
cfg: a detectron2 CfgNode |
|
|
|
Returns: |
|
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. |
|
""" |
|
body = cvt.build_cvt_backbone(cfg) |
|
in_channels_stages = cfg.MODEL.SPEC.DIM_EMBED |
|
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
in_channels_p6p7 = out_channels |
|
fpn = fpn_module.FPN( |
|
in_channels_list=[ |
|
0, |
|
in_channels_stages[-3], |
|
in_channels_stages[-2], |
|
in_channels_stages[-1], |
|
], |
|
out_channels=out_channels, |
|
conv_block=conv_with_kaiming_uniform( |
|
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU |
|
), |
|
top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), |
|
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, |
|
use_spp=cfg.MODEL.FPN.USE_SPP, |
|
use_pan=cfg.MODEL.FPN.USE_PAN |
|
) |
|
if cfg.MODEL.FPN.USE_DYHEAD: |
|
dyhead = DyHead(cfg, out_channels) |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) |
|
else: |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("EFFICIENT7-FPN-RETINANET") |
|
@registry.BACKBONES.register("EFFICIENT7-FPN-FCOS") |
|
@registry.BACKBONES.register("EFFICIENT5-FPN-RETINANET") |
|
@registry.BACKBONES.register("EFFICIENT5-FPN-FCOS") |
|
@registry.BACKBONES.register("EFFICIENT3-FPN-RETINANET") |
|
@registry.BACKBONES.register("EFFICIENT3-FPN-FCOS") |
|
def build_eff_fpn_p6p7_backbone(cfg): |
|
version = cfg.MODEL.BACKBONE.CONV_BODY.split('-')[0] |
|
version = version.replace('EFFICIENT', 'b') |
|
body = efficientnet.get_efficientnet(cfg, version) |
|
in_channels_stage = body.out_channels |
|
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
in_channels_p6p7 = out_channels |
|
in_channels_stage[0] = 0 |
|
fpn = fpn_module.FPN( |
|
in_channels_list=in_channels_stage, |
|
out_channels=out_channels, |
|
conv_block=conv_with_kaiming_uniform( |
|
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU |
|
), |
|
top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), |
|
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, |
|
use_spp=cfg.MODEL.FPN.USE_SPP, |
|
use_pan=cfg.MODEL.FPN.USE_PAN |
|
) |
|
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("EFFICIENT7-BIFPN-RETINANET") |
|
@registry.BACKBONES.register("EFFICIENT7-BIFPN-FCOS") |
|
@registry.BACKBONES.register("EFFICIENT5-BIFPN-RETINANET") |
|
@registry.BACKBONES.register("EFFICIENT5-BIFPN-FCOS") |
|
@registry.BACKBONES.register("EFFICIENT3-BIFPN-RETINANET") |
|
@registry.BACKBONES.register("EFFICIENT3-BIFPN-FCOS") |
|
def build_eff_fpn_p6p7_backbone(cfg): |
|
version = cfg.MODEL.BACKBONE.CONV_BODY.split('-')[0] |
|
version = version.replace('EFFICIENT', 'b') |
|
body = efficientnet.get_efficientnet(cfg, version) |
|
in_channels_stage = body.out_channels |
|
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
bifpns = nn.ModuleList() |
|
for i in range(cfg.MODEL.BIFPN.NUM_REPEATS): |
|
first_time = (i==0) |
|
fpn = bifpn.BiFPN( |
|
in_channels_list=in_channels_stage[1:], |
|
out_channels=out_channels, |
|
first_time=first_time, |
|
attention=cfg.MODEL.BIFPN.USE_ATTENTION |
|
) |
|
bifpns.append(fpn) |
|
model = nn.Sequential(OrderedDict([("body", body), ("bifpn", bifpns)])) |
|
return model |
|
|
|
|
|
@registry.BACKBONES.register("EFFICIENT-DET") |
|
def build_efficientdet_backbone(cfg): |
|
efficientdet.g_simple_padding = True |
|
compound = cfg.MODEL.BACKBONE.EFFICIENT_DET_COMPOUND |
|
start_from = cfg.MODEL.BACKBONE.EFFICIENT_DET_START_FROM |
|
model = efficientdet.EffNetFPN( |
|
compound_coef=compound, |
|
start_from=start_from, |
|
) |
|
if cfg.MODEL.BACKBONE.USE_SYNCBN: |
|
import torch |
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) |
|
return model |
|
|
|
|
|
def build_backbone(cfg): |
|
assert cfg.MODEL.BACKBONE.CONV_BODY in registry.BACKBONES, \ |
|
"cfg.MODEL.BACKBONE.CONV_BODY: {} are not registered in registry".format( |
|
cfg.MODEL.BACKBONE.CONV_BODY |
|
) |
|
return registry.BACKBONES[cfg.MODEL.BACKBONE.CONV_BODY](cfg) |
|
|