|
import torch.nn as nn |
|
from .ops import * |
|
|
|
|
|
class stem(nn.Module): |
|
num_layer = 1 |
|
|
|
def __init__(self, conv, inplanes, planes, stride=1, norm_layer=nn.BatchNorm2d): |
|
super(stem, self).__init__() |
|
|
|
self.conv1 = conv(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class basic(nn.Module): |
|
expansion = 1 |
|
num_layer = 2 |
|
|
|
def __init__(self, conv, inplanes, planes, stride=1, midplanes=None, norm_layer=nn.BatchNorm2d): |
|
super(basic, self).__init__() |
|
midplanes = planes if midplanes is None else midplanes |
|
self.conv1 = conv(inplanes, midplanes, stride) |
|
self.bn1 = norm_layer(midplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv(midplanes, planes) |
|
self.bn2 = norm_layer(planes) |
|
if stride!=1 or inplanes!=planes*self.expansion: |
|
self.downsample = nn.Sequential( |
|
conv1x1(inplanes, planes, stride), |
|
norm_layer(planes), |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class bottleneck(nn.Module): |
|
expansion = 4 |
|
num_layer = 3 |
|
|
|
def __init__(self, conv, inplanes, planes, stride=1, midplanes=None, norm_layer=nn.BatchNorm2d): |
|
super(bottleneck, self).__init__() |
|
midplanes = planes if midplanes is None else midplanes |
|
self.conv1 = conv1x1(inplanes, midplanes) |
|
self.bn1 = norm_layer(midplanes) |
|
self.conv2 = conv(midplanes, midplanes, stride) |
|
self.bn2 = norm_layer(midplanes) |
|
self.conv3 = conv1x1(midplanes, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
if stride!=1 or inplanes!=planes*self.expansion: |
|
self.downsample = nn.Sequential( |
|
conv1x1(inplanes, planes*self.expansion, stride), |
|
norm_layer(planes*self.expansion), |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class invert(nn.Module): |
|
def __init__(self, conv, inp, oup, stride=1, expand_ratio=1, norm_layer=nn.BatchNorm2d): |
|
super(invert, self).__init__() |
|
self.stride = stride |
|
assert stride in [1, 2] |
|
|
|
hidden_dim = round(inp * expand_ratio) |
|
self.use_res_connect = self.stride == 1 and inp == oup |
|
|
|
if expand_ratio == 1: |
|
self.conv = nn.Sequential( |
|
|
|
conv(hidden_dim, hidden_dim, stride), |
|
norm_layer(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
norm_layer(oup), |
|
) |
|
else: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), |
|
norm_layer(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
conv(hidden_dim, hidden_dim, stride), |
|
norm_layer(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
norm_layer(oup), |
|
) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
invert2 = lambda op, inp, outp, stride, **kwargs: invert(op, inp, outp, stride, expand_ratio=2, **kwargs) |
|
invert3 = lambda op, inp, outp, stride, **kwargs: invert(op, inp, outp, stride, expand_ratio=3, **kwargs) |
|
invert4 = lambda op, inp, outp, stride, **kwargs: invert(op, inp, outp, stride, expand_ratio=4, **kwargs) |
|
invert6 = lambda op, inp, outp, stride, **kwargs: invert(op, inp, outp, stride, expand_ratio=6, **kwargs) |
|
|
|
|
|
def channel_shuffle(x, groups): |
|
batchsize, num_channels, height, width = x.data.size() |
|
channels_per_group = num_channels // groups |
|
|
|
x = x.view(batchsize, groups, channels_per_group, height, width) |
|
x = torch.transpose(x, 1, 2).contiguous() |
|
|
|
x = x.view(batchsize, -1, height, width) |
|
return x |
|
|
|
|
|
class shuffle(nn.Module): |
|
expansion = 1 |
|
num_layer = 3 |
|
|
|
def __init__(self, conv, inplanes, outplanes, stride=1, midplanes=None, norm_layer=nn.BatchNorm2d): |
|
super(shuffle, self).__init__() |
|
inplanes = inplanes // 2 if stride == 1 else inplanes |
|
midplanes = outplanes // 2 if midplanes is None else midplanes |
|
rightoutplanes = outplanes - inplanes |
|
if stride == 2: |
|
self.left_branch = nn.Sequential( |
|
|
|
conv(inplanes, inplanes, stride), |
|
norm_layer(inplanes), |
|
|
|
conv1x1(inplanes, inplanes), |
|
norm_layer(inplanes), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.right_branch = nn.Sequential( |
|
|
|
conv1x1(inplanes, midplanes), |
|
norm_layer(midplanes), |
|
nn.ReLU(inplace=True), |
|
|
|
conv(midplanes, midplanes, stride), |
|
norm_layer(midplanes), |
|
|
|
conv1x1(midplanes, rightoutplanes), |
|
norm_layer(rightoutplanes), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.reduce = stride==2 |
|
|
|
def forward(self, x): |
|
if self.reduce: |
|
out = torch.cat((self.left_branch(x), self.right_branch(x)), 1) |
|
else: |
|
x1 = x[:, :(x.shape[1]//2), :, :] |
|
x2 = x[:, (x.shape[1]//2):, :, :] |
|
out = torch.cat((x1, self.right_branch(x2)), 1) |
|
|
|
return channel_shuffle(out, 2) |
|
|
|
|
|
class shufflex(nn.Module): |
|
expansion = 1 |
|
num_layer = 3 |
|
|
|
def __init__(self, conv, inplanes, outplanes, stride=1, midplanes=None, norm_layer=nn.BatchNorm2d): |
|
super(shufflex, self).__init__() |
|
inplanes = inplanes // 2 if stride == 1 else inplanes |
|
midplanes = outplanes // 2 if midplanes is None else midplanes |
|
rightoutplanes = outplanes - inplanes |
|
if stride==2: |
|
self.left_branch = nn.Sequential( |
|
|
|
conv(inplanes, inplanes, stride), |
|
norm_layer(inplanes), |
|
|
|
conv1x1(inplanes, inplanes), |
|
norm_layer(inplanes), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.right_branch = nn.Sequential( |
|
|
|
conv(inplanes, inplanes, stride), |
|
norm_layer(inplanes), |
|
|
|
conv1x1(inplanes, midplanes), |
|
norm_layer(midplanes), |
|
nn.ReLU(inplace=True), |
|
|
|
conv(midplanes, midplanes, 1), |
|
norm_layer(midplanes), |
|
|
|
conv1x1(midplanes, midplanes), |
|
norm_layer(midplanes), |
|
nn.ReLU(inplace=True), |
|
|
|
conv(midplanes, midplanes, 1), |
|
norm_layer(midplanes), |
|
|
|
conv1x1(midplanes, rightoutplanes), |
|
norm_layer(rightoutplanes), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.reduce = stride==2 |
|
|
|
def forward(self, x): |
|
if self.reduce: |
|
out = torch.cat((self.left_branch(x), self.right_branch(x)), 1) |
|
else: |
|
x1 = x[:, :(x.shape[1] // 2), :, :] |
|
x2 = x[:, (x.shape[1] // 2):, :, :] |
|
out = torch.cat((x1, self.right_branch(x2)), 1) |
|
|
|
return channel_shuffle(out, 2) |