|
import torch |
|
import re |
|
import numpy as np |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import logging |
|
import cv2 |
|
import math |
|
import itertools |
|
import collections |
|
from torchvision.ops import nms |
|
|
|
|
|
GlobalParams = collections.namedtuple('GlobalParams', [ |
|
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', |
|
'num_classes', 'width_coefficient', 'depth_coefficient', |
|
'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size']) |
|
|
|
|
|
BlockArgs = collections.namedtuple('BlockArgs', [ |
|
'kernel_size', 'num_repeat', 'input_filters', 'output_filters', |
|
'expand_ratio', 'id_skip', 'stride', 'se_ratio']) |
|
|
|
|
|
|
|
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) |
|
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) |
|
|
|
|
|
|
|
g_simple_padding = True |
|
class MaxPool2dStaticSamePadding(nn.Module): |
|
""" |
|
created by Zylo117 |
|
The real keras/tensorflow MaxPool2d with same padding |
|
""" |
|
|
|
def __init__(self, kernel_size, stride): |
|
super().__init__() |
|
if g_simple_padding: |
|
self.pool = nn.MaxPool2d(kernel_size, stride, |
|
padding=(kernel_size-1)//2) |
|
else: |
|
assert ValueError() |
|
self.pool = nn.MaxPool2d(kernel_size, stride) |
|
self.stride = self.pool.stride |
|
self.kernel_size = self.pool.kernel_size |
|
|
|
if isinstance(self.stride, int): |
|
self.stride = [self.stride] * 2 |
|
elif len(self.stride) == 1: |
|
self.stride = [self.stride[0]] * 2 |
|
|
|
if isinstance(self.kernel_size, int): |
|
self.kernel_size = [self.kernel_size] * 2 |
|
elif len(self.kernel_size) == 1: |
|
self.kernel_size = [self.kernel_size[0]] * 2 |
|
|
|
def forward(self, x): |
|
if g_simple_padding: |
|
return self.pool(x) |
|
else: |
|
assert ValueError() |
|
h, w = x.shape[-2:] |
|
|
|
h_step = math.ceil(w / self.stride[1]) |
|
v_step = math.ceil(h / self.stride[0]) |
|
h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1) |
|
v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1) |
|
|
|
extra_h = h_cover_len - w |
|
extra_v = v_cover_len - h |
|
|
|
left = extra_h // 2 |
|
right = extra_h - left |
|
top = extra_v // 2 |
|
bottom = extra_v - top |
|
|
|
x = F.pad(x, [left, right, top, bottom]) |
|
|
|
x = self.pool(x) |
|
return x |
|
|
|
class Conv2dStaticSamePadding(nn.Module): |
|
""" |
|
created by Zylo117 |
|
The real keras/tensorflow conv2d with same padding |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs): |
|
super().__init__() |
|
if g_simple_padding: |
|
assert kernel_size % 2 == 1 |
|
assert dilation == 1 |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, |
|
bias=bias, |
|
groups=groups, |
|
padding=(kernel_size - 1) // 2) |
|
self.stride = self.conv.stride |
|
if isinstance(self.stride, int): |
|
self.stride = [self.stride] * 2 |
|
elif len(self.stride) == 1: |
|
self.stride = [self.stride[0]] * 2 |
|
else: |
|
self.stride = list(self.stride) |
|
else: |
|
assert ValueError() |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, |
|
bias=bias, groups=groups) |
|
self.stride = self.conv.stride |
|
self.kernel_size = self.conv.kernel_size |
|
self.dilation = self.conv.dilation |
|
|
|
if isinstance(self.stride, int): |
|
self.stride = [self.stride] * 2 |
|
elif len(self.stride) == 1: |
|
self.stride = [self.stride[0]] * 2 |
|
|
|
if isinstance(self.kernel_size, int): |
|
self.kernel_size = [self.kernel_size] * 2 |
|
elif len(self.kernel_size) == 1: |
|
self.kernel_size = [self.kernel_size[0]] * 2 |
|
|
|
def forward(self, x): |
|
if g_simple_padding: |
|
return self.conv(x) |
|
else: |
|
assert ValueError() |
|
h, w = x.shape[-2:] |
|
|
|
h_step = math.ceil(w / self.stride[1]) |
|
v_step = math.ceil(h / self.stride[0]) |
|
h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1) |
|
v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1) |
|
|
|
extra_h = h_cover_len - w |
|
extra_v = v_cover_len - h |
|
|
|
left = extra_h // 2 |
|
right = extra_h - left |
|
top = extra_v // 2 |
|
bottom = extra_v - top |
|
|
|
x = F.pad(x, [left, right, top, bottom]) |
|
|
|
x = self.conv(x) |
|
return x |
|
|
|
class SeparableConvBlock(nn.Module): |
|
""" |
|
created by Zylo117 |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False): |
|
super(SeparableConvBlock, self).__init__() |
|
if out_channels is None: |
|
out_channels = in_channels |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels, |
|
kernel_size=3, stride=1, groups=in_channels, bias=False) |
|
self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1) |
|
|
|
self.norm = norm |
|
if self.norm: |
|
|
|
self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3) |
|
|
|
self.activation = activation |
|
if self.activation: |
|
self.swish = MemoryEfficientSwish() if not onnx_export else Swish() |
|
|
|
def forward(self, x): |
|
x = self.depthwise_conv(x) |
|
x = self.pointwise_conv(x) |
|
|
|
if self.norm: |
|
x = self.bn(x) |
|
|
|
if self.activation: |
|
x = self.swish(x) |
|
|
|
return x |
|
|
|
|
|
class BiFPN(nn.Module): |
|
""" |
|
modified by Zylo117 |
|
""" |
|
|
|
def __init__(self, num_channels, conv_channels, first_time=False, |
|
epsilon=1e-4, onnx_export=False, attention=True, |
|
adaptive_up=False): |
|
""" |
|
|
|
Args: |
|
num_channels: |
|
conv_channels: |
|
first_time: whether the input comes directly from the efficientnet, |
|
if True, downchannel it first, and downsample P5 to generate P6 then P7 |
|
epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon |
|
onnx_export: if True, use Swish instead of MemoryEfficientSwish |
|
""" |
|
super(BiFPN, self).__init__() |
|
self.epsilon = epsilon |
|
|
|
self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) |
|
|
|
|
|
self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
|
|
self.adaptive_up = adaptive_up |
|
|
|
self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) |
|
self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) |
|
self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) |
|
self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) |
|
|
|
self.swish = MemoryEfficientSwish() if not onnx_export else Swish() |
|
|
|
self.first_time = first_time |
|
if self.first_time: |
|
self.p5_down_channel = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
) |
|
self.p4_down_channel = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
) |
|
self.p3_down_channel = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
) |
|
|
|
if len(conv_channels) == 3: |
|
self.p5_to_p6 = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
MaxPool2dStaticSamePadding(3, 2) |
|
) |
|
else: |
|
assert len(conv_channels) == 4 |
|
self.p6_down_channel = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[3], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
) |
|
|
|
self.p6_to_p7 = nn.Sequential( |
|
MaxPool2dStaticSamePadding(3, 2) |
|
) |
|
|
|
self.p4_down_channel_2 = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
) |
|
self.p5_down_channel_2 = nn.Sequential( |
|
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), |
|
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), |
|
) |
|
|
|
|
|
self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) |
|
self.p6_w1_relu = nn.ReLU() |
|
self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) |
|
self.p5_w1_relu = nn.ReLU() |
|
self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) |
|
self.p4_w1_relu = nn.ReLU() |
|
self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) |
|
self.p3_w1_relu = nn.ReLU() |
|
|
|
self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) |
|
self.p4_w2_relu = nn.ReLU() |
|
self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) |
|
self.p5_w2_relu = nn.ReLU() |
|
self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) |
|
self.p6_w2_relu = nn.ReLU() |
|
self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) |
|
self.p7_w2_relu = nn.ReLU() |
|
|
|
self.attention = attention |
|
|
|
def forward(self, inputs): |
|
""" |
|
illustration of a minimal bifpn unit |
|
P7_0 -------------------------> P7_2 --------> |
|
|-------------| ↑ |
|
↓ | |
|
P6_0 ---------> P6_1 ---------> P6_2 --------> |
|
|-------------|--------------↑ ↑ |
|
↓ | |
|
P5_0 ---------> P5_1 ---------> P5_2 --------> |
|
|-------------|--------------↑ ↑ |
|
↓ | |
|
P4_0 ---------> P4_1 ---------> P4_2 --------> |
|
|-------------|--------------↑ ↑ |
|
|--------------↓ | |
|
P3_0 -------------------------> P3_2 --------> |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.attention: |
|
p3_out, p4_out, p5_out, p6_out, p7_out = self._forward_fast_attention(inputs) |
|
else: |
|
p3_out, p4_out, p5_out, p6_out, p7_out = self._forward(inputs) |
|
|
|
return p3_out, p4_out, p5_out, p6_out, p7_out |
|
|
|
def _forward_fast_attention(self, inputs): |
|
if self.first_time: |
|
if len(inputs) == 3: |
|
p3, p4, p5 = inputs |
|
p6_in = self.p5_to_p6(p5) |
|
else: |
|
p3, p4, p5, p6 = inputs |
|
p6_in = self.p6_down_channel(p6) |
|
|
|
p7_in = self.p6_to_p7(p6_in) |
|
|
|
p3_in = self.p3_down_channel(p3) |
|
p4_in = self.p4_down_channel(p4) |
|
p5_in = self.p5_down_channel(p5) |
|
else: |
|
|
|
p3_in, p4_in, p5_in, p6_in, p7_in = inputs |
|
|
|
|
|
|
|
if not self.adaptive_up: |
|
|
|
p6_w1 = self.p6_w1_relu(self.p6_w1) |
|
weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) |
|
|
|
p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in))) |
|
|
|
|
|
p5_w1 = self.p5_w1_relu(self.p5_w1) |
|
weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) |
|
|
|
p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up))) |
|
|
|
|
|
p4_w1 = self.p4_w1_relu(self.p4_w1) |
|
weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) |
|
|
|
p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up))) |
|
|
|
|
|
p3_w1 = self.p3_w1_relu(self.p3_w1) |
|
weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) |
|
|
|
p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up))) |
|
else: |
|
|
|
p6_w1 = self.p6_w1_relu(self.p6_w1) |
|
weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) |
|
|
|
p6_upsample = nn.Upsample(size=p6_in.shape[-2:]) |
|
p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * p6_upsample(p7_in))) |
|
|
|
|
|
p5_w1 = self.p5_w1_relu(self.p5_w1) |
|
weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) |
|
|
|
p5_upsample = nn.Upsample(size=p5_in.shape[-2:]) |
|
p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * p5_upsample(p6_up))) |
|
|
|
|
|
p4_w1 = self.p4_w1_relu(self.p4_w1) |
|
weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) |
|
|
|
p4_upsample = nn.Upsample(size=p4_in.shape[-2:]) |
|
p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * p4_upsample(p5_up))) |
|
|
|
|
|
p3_w1 = self.p3_w1_relu(self.p3_w1) |
|
weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) |
|
p3_upsample = nn.Upsample(size=p3_in.shape[-2:]) |
|
|
|
p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * p3_upsample(p4_up))) |
|
|
|
if self.first_time: |
|
p4_in = self.p4_down_channel_2(p4) |
|
p5_in = self.p5_down_channel_2(p5) |
|
|
|
|
|
p4_w2 = self.p4_w2_relu(self.p4_w2) |
|
weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon) |
|
|
|
p4_out = self.conv4_down( |
|
self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out))) |
|
|
|
|
|
p5_w2 = self.p5_w2_relu(self.p5_w2) |
|
weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon) |
|
|
|
p5_out = self.conv5_down( |
|
self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out))) |
|
|
|
|
|
p6_w2 = self.p6_w2_relu(self.p6_w2) |
|
weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon) |
|
|
|
p6_out = self.conv6_down( |
|
self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out))) |
|
|
|
|
|
p7_w2 = self.p7_w2_relu(self.p7_w2) |
|
weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon) |
|
|
|
p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out))) |
|
|
|
return p3_out, p4_out, p5_out, p6_out, p7_out |
|
|
|
def _forward(self, inputs): |
|
if self.first_time: |
|
p3, p4, p5 = inputs |
|
|
|
p6_in = self.p5_to_p6(p5) |
|
p7_in = self.p6_to_p7(p6_in) |
|
|
|
p3_in = self.p3_down_channel(p3) |
|
p4_in = self.p4_down_channel(p4) |
|
p5_in = self.p5_down_channel(p5) |
|
|
|
else: |
|
|
|
p3_in, p4_in, p5_in, p6_in, p7_in = inputs |
|
|
|
|
|
|
|
|
|
p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in))) |
|
|
|
|
|
p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up))) |
|
|
|
|
|
p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up))) |
|
|
|
|
|
p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up))) |
|
|
|
if self.first_time: |
|
p4_in = self.p4_down_channel_2(p4) |
|
p5_in = self.p5_down_channel_2(p5) |
|
|
|
|
|
p4_out = self.conv4_down( |
|
self.swish(p4_in + p4_up + self.p4_downsample(p3_out))) |
|
|
|
|
|
p5_out = self.conv5_down( |
|
self.swish(p5_in + p5_up + self.p5_downsample(p4_out))) |
|
|
|
|
|
p6_out = self.conv6_down( |
|
self.swish(p6_in + p6_up + self.p6_downsample(p5_out))) |
|
|
|
|
|
p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out))) |
|
|
|
return p3_out, p4_out, p5_out, p6_out, p7_out |
|
|
|
|
|
class Regressor(nn.Module): |
|
""" |
|
modified by Zylo117 |
|
""" |
|
|
|
def __init__(self, in_channels, num_anchors, num_layers, onnx_export=False): |
|
super(Regressor, self).__init__() |
|
self.num_layers = num_layers |
|
self.num_layers = num_layers |
|
|
|
self.conv_list = nn.ModuleList( |
|
[SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) |
|
self.bn_list = nn.ModuleList( |
|
[nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in |
|
range(5)]) |
|
self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False) |
|
self.swish = MemoryEfficientSwish() if not onnx_export else Swish() |
|
|
|
def forward(self, inputs): |
|
feats = [] |
|
for feat, bn_list in zip(inputs, self.bn_list): |
|
for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list): |
|
feat = conv(feat) |
|
feat = bn(feat) |
|
feat = self.swish(feat) |
|
feat = self.header(feat) |
|
feat = feat.permute(0, 2, 3, 1) |
|
feat = feat.contiguous().view(feat.shape[0], -1, 4) |
|
|
|
feats.append(feat) |
|
|
|
feats = torch.cat(feats, dim=1) |
|
|
|
return feats |
|
|
|
class SwishImplementation(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, i): |
|
result = i * torch.sigmoid(i) |
|
ctx.save_for_backward(i) |
|
return result |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
i = ctx.saved_variables[0] |
|
sigmoid_i = torch.sigmoid(i) |
|
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) |
|
|
|
class MemoryEfficientSwish(nn.Module): |
|
def forward(self, x): |
|
if torch._C._get_tracing_state(): |
|
return x * torch.sigmoid(x) |
|
return SwishImplementation.apply(x) |
|
|
|
class Swish(nn.Module): |
|
def forward(self, x): |
|
return x * torch.sigmoid(x) |
|
|
|
class Classifier(nn.Module): |
|
""" |
|
modified by Zylo117 |
|
""" |
|
|
|
def __init__(self, in_channels, num_anchors, num_classes, num_layers, |
|
onnx_export=False, prior_prob=0.01): |
|
super(Classifier, self).__init__() |
|
self.num_anchors = num_anchors |
|
self.num_classes = num_classes |
|
self.num_layers = num_layers |
|
self.conv_list = nn.ModuleList( |
|
[SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) |
|
self.bn_list = nn.ModuleList( |
|
[nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in |
|
range(5)]) |
|
self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False) |
|
|
|
prior_prob = prior_prob |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
torch.nn.init.normal_(self.header.pointwise_conv.conv.weight, std=0.01) |
|
torch.nn.init.constant_(self.header.pointwise_conv.conv.bias, bias_value) |
|
|
|
self.swish = MemoryEfficientSwish() if not onnx_export else Swish() |
|
|
|
def forward(self, inputs): |
|
feats = [] |
|
for feat, bn_list in zip(inputs, self.bn_list): |
|
for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list): |
|
feat = conv(feat) |
|
feat = bn(feat) |
|
feat = self.swish(feat) |
|
feat = self.header(feat) |
|
|
|
feat = feat.permute(0, 2, 3, 1) |
|
feat = feat.contiguous().view(feat.shape[0], feat.shape[1], feat.shape[2], self.num_anchors, |
|
self.num_classes) |
|
feat = feat.contiguous().view(feat.shape[0], -1, self.num_classes) |
|
|
|
feats.append(feat) |
|
|
|
feats = torch.cat(feats, dim=1) |
|
|
|
|
|
return feats |
|
|
|
class Conv2dDynamicSamePadding(nn.Conv2d): |
|
""" 2D Convolutions like TensorFlow, for a dynamic image size """ |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): |
|
super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) |
|
raise ValueError('tend to be deprecated') |
|
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 |
|
|
|
def forward(self, x): |
|
ih, iw = x.size()[-2:] |
|
kh, kw = self.weight.size()[-2:] |
|
sh, sw = self.stride |
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) |
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) |
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) |
|
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
|
|
|
|
def get_same_padding_conv2d(image_size=None): |
|
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise. |
|
Static padding is necessary for ONNX exporting of models. """ |
|
if image_size is None: |
|
raise ValueError('not validated') |
|
return Conv2dDynamicSamePadding |
|
else: |
|
from functools import partial |
|
return partial(Conv2dStaticSamePadding, image_size=image_size) |
|
|
|
def round_filters(filters, global_params): |
|
""" Calculate and round number of filters based on depth multiplier. """ |
|
multiplier = global_params.width_coefficient |
|
if not multiplier: |
|
return filters |
|
divisor = global_params.depth_divisor |
|
min_depth = global_params.min_depth |
|
filters *= multiplier |
|
min_depth = min_depth or divisor |
|
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) |
|
if new_filters < 0.9 * filters: |
|
new_filters += divisor |
|
return int(new_filters) |
|
|
|
def round_repeats(repeats, global_params): |
|
""" Round number of filters based on depth multiplier. """ |
|
multiplier = global_params.depth_coefficient |
|
if not multiplier: |
|
return repeats |
|
return int(math.ceil(multiplier * repeats)) |
|
|
|
def drop_connect(inputs, p, training): |
|
""" Drop connect. """ |
|
if not training: return inputs |
|
batch_size = inputs.shape[0] |
|
keep_prob = 1 - p |
|
random_tensor = keep_prob |
|
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) |
|
binary_tensor = torch.floor(random_tensor) |
|
output = inputs / keep_prob * binary_tensor |
|
return output |
|
|
|
class MBConvBlock(nn.Module): |
|
""" |
|
Mobile Inverted Residual Bottleneck Block |
|
|
|
Args: |
|
block_args (namedtuple): BlockArgs, see above |
|
global_params (namedtuple): GlobalParam, see above |
|
|
|
Attributes: |
|
has_se (bool): Whether the block contains a Squeeze and Excitation layer. |
|
""" |
|
|
|
def __init__(self, block_args, global_params): |
|
super().__init__() |
|
self._block_args = block_args |
|
self._bn_mom = 1 - global_params.batch_norm_momentum |
|
self._bn_eps = global_params.batch_norm_epsilon |
|
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) |
|
self.id_skip = block_args.id_skip |
|
|
|
|
|
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) |
|
|
|
|
|
inp = self._block_args.input_filters |
|
oup = self._block_args.input_filters * self._block_args.expand_ratio |
|
if self._block_args.expand_ratio != 1: |
|
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) |
|
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) |
|
|
|
|
|
k = self._block_args.kernel_size |
|
s = self._block_args.stride |
|
if isinstance(s, (tuple, list)) and all([s0 == s[0] for s0 in s]): |
|
s = s[0] |
|
self._depthwise_conv = Conv2d( |
|
in_channels=oup, out_channels=oup, groups=oup, |
|
kernel_size=k, stride=s, bias=False) |
|
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) |
|
|
|
|
|
if self.has_se: |
|
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) |
|
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) |
|
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) |
|
|
|
|
|
final_oup = self._block_args.output_filters |
|
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) |
|
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) |
|
self._swish = MemoryEfficientSwish() |
|
|
|
def forward(self, inputs, drop_connect_rate=None): |
|
""" |
|
:param inputs: input tensor |
|
:param drop_connect_rate: drop connect rate (float, between 0 and 1) |
|
:return: output of block |
|
""" |
|
|
|
|
|
x = inputs |
|
if self._block_args.expand_ratio != 1: |
|
x = self._expand_conv(inputs) |
|
x = self._bn0(x) |
|
x = self._swish(x) |
|
|
|
x = self._depthwise_conv(x) |
|
x = self._bn1(x) |
|
x = self._swish(x) |
|
|
|
|
|
if self.has_se: |
|
x_squeezed = F.adaptive_avg_pool2d(x, 1) |
|
x_squeezed = self._se_reduce(x_squeezed) |
|
x_squeezed = self._swish(x_squeezed) |
|
x_squeezed = self._se_expand(x_squeezed) |
|
x = torch.sigmoid(x_squeezed) * x |
|
|
|
x = self._project_conv(x) |
|
x = self._bn2(x) |
|
|
|
|
|
input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters |
|
if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: |
|
if drop_connect_rate: |
|
x = drop_connect(x, p=drop_connect_rate, training=self.training) |
|
x = x + inputs |
|
return x |
|
|
|
def set_swish(self, memory_efficient=True): |
|
"""Sets swish function as memory efficient (for training) or standard (for export)""" |
|
self._swish = MemoryEfficientSwish() if memory_efficient else Swish() |
|
|
|
class BlockDecoder(object): |
|
""" Block Decoder for readability, straight from the official TensorFlow repository """ |
|
|
|
@staticmethod |
|
def _decode_block_string(block_string): |
|
""" Gets a block through a string notation of arguments. """ |
|
assert isinstance(block_string, str) |
|
|
|
ops = block_string.split('_') |
|
options = {} |
|
for op in ops: |
|
splits = re.split(r'(\d.*)', op) |
|
if len(splits) >= 2: |
|
key, value = splits[:2] |
|
options[key] = value |
|
|
|
|
|
assert (('s' in options and len(options['s']) == 1) or |
|
(len(options['s']) == 2 and options['s'][0] == options['s'][1])) |
|
|
|
return BlockArgs( |
|
kernel_size=int(options['k']), |
|
num_repeat=int(options['r']), |
|
input_filters=int(options['i']), |
|
output_filters=int(options['o']), |
|
expand_ratio=int(options['e']), |
|
id_skip=('noskip' not in block_string), |
|
se_ratio=float(options['se']) if 'se' in options else None, |
|
stride=[int(options['s'][0])]) |
|
|
|
@staticmethod |
|
def _encode_block_string(block): |
|
"""Encodes a block to a string.""" |
|
args = [ |
|
'r%d' % block.num_repeat, |
|
'k%d' % block.kernel_size, |
|
's%d%d' % (block.strides[0], block.strides[1]), |
|
'e%s' % block.expand_ratio, |
|
'i%d' % block.input_filters, |
|
'o%d' % block.output_filters |
|
] |
|
if 0 < block.se_ratio <= 1: |
|
args.append('se%s' % block.se_ratio) |
|
if block.id_skip is False: |
|
args.append('noskip') |
|
return '_'.join(args) |
|
|
|
@staticmethod |
|
def decode(string_list): |
|
""" |
|
Decodes a list of string notations to specify blocks inside the network. |
|
|
|
:param string_list: a list of strings, each string is a notation of block |
|
:return: a list of BlockArgs namedtuples of block args |
|
""" |
|
assert isinstance(string_list, list) |
|
blocks_args = [] |
|
for block_string in string_list: |
|
blocks_args.append(BlockDecoder._decode_block_string(block_string)) |
|
return blocks_args |
|
|
|
@staticmethod |
|
def encode(blocks_args): |
|
""" |
|
Encodes a list of BlockArgs to a list of strings. |
|
|
|
:param blocks_args: a list of BlockArgs namedtuples of block args |
|
:return: a list of strings, each string is a notation of block |
|
""" |
|
block_strings = [] |
|
for block in blocks_args: |
|
block_strings.append(BlockDecoder._encode_block_string(block)) |
|
return block_strings |
|
|
|
def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.2, |
|
drop_connect_rate=0.2, image_size=None, num_classes=1000): |
|
""" Creates a efficientnet model. """ |
|
|
|
blocks_args = [ |
|
'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', |
|
'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', |
|
'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', |
|
'r1_k3_s11_e6_i192_o320_se0.25', |
|
] |
|
blocks_args = BlockDecoder.decode(blocks_args) |
|
|
|
global_params = GlobalParams( |
|
batch_norm_momentum=0.99, |
|
batch_norm_epsilon=1e-3, |
|
dropout_rate=dropout_rate, |
|
drop_connect_rate=drop_connect_rate, |
|
|
|
num_classes=num_classes, |
|
width_coefficient=width_coefficient, |
|
depth_coefficient=depth_coefficient, |
|
depth_divisor=8, |
|
min_depth=None, |
|
image_size=image_size, |
|
) |
|
|
|
return blocks_args, global_params |
|
|
|
|
|
def efficientnet_params(model_name): |
|
""" Map EfficientNet model name to parameter coefficients. """ |
|
params_dict = { |
|
|
|
'efficientnet-b0': (1.0, 1.0, 224, 0.2), |
|
'efficientnet-b1': (1.0, 1.1, 240, 0.2), |
|
'efficientnet-b2': (1.1, 1.2, 260, 0.3), |
|
'efficientnet-b3': (1.2, 1.4, 300, 0.3), |
|
'efficientnet-b4': (1.4, 1.8, 380, 0.4), |
|
'efficientnet-b5': (1.6, 2.2, 456, 0.4), |
|
'efficientnet-b6': (1.8, 2.6, 528, 0.5), |
|
'efficientnet-b7': (2.0, 3.1, 600, 0.5), |
|
'efficientnet-b8': (2.2, 3.6, 672, 0.5), |
|
'efficientnet-l2': (4.3, 5.3, 800, 0.5), |
|
} |
|
return params_dict[model_name] |
|
|
|
|
|
def get_model_params(model_name, override_params): |
|
""" Get the block args and global params for a given model """ |
|
if model_name.startswith('efficientnet'): |
|
w, d, s, p = efficientnet_params(model_name) |
|
|
|
blocks_args, global_params = efficientnet( |
|
width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) |
|
else: |
|
raise NotImplementedError('model name is not pre-defined: %s' % model_name) |
|
if override_params: |
|
|
|
global_params = global_params._replace(**override_params) |
|
return blocks_args, global_params |
|
|
|
url_map = { |
|
'efficientnet-b0': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b0-355c32eb.pth', |
|
'efficientnet-b1': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b1-f1951068.pth', |
|
'efficientnet-b2': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b2-8bb594d6.pth', |
|
'efficientnet-b3': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b3-5fb5a3c3.pth', |
|
'efficientnet-b4': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b4-6ed6700e.pth', |
|
'efficientnet-b5': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b5-b6417697.pth', |
|
'efficientnet-b6': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b6-c76e70fd.pth', |
|
'efficientnet-b7': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b7-dcc49843.pth', |
|
} |
|
|
|
url_map_advprop = { |
|
'efficientnet-b0': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b0-b64d5a18.pth', |
|
'efficientnet-b1': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b1-0f3ce85a.pth', |
|
'efficientnet-b2': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b2-6e9d97e5.pth', |
|
'efficientnet-b3': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b3-cdd7c0f4.pth', |
|
'efficientnet-b4': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b4-44fb3a87.pth', |
|
'efficientnet-b5': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b5-86493f6b.pth', |
|
'efficientnet-b6': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b6-ac80338e.pth', |
|
'efficientnet-b7': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b7-4652b6dd.pth', |
|
'efficientnet-b8': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b8-22a8fe65.pth', |
|
} |
|
|
|
def load_pretrained_weights(model, model_name, load_fc=True, advprop=False): |
|
""" Loads pretrained weights, and downloads if loading for the first time. """ |
|
|
|
url_map_ = url_map_advprop if advprop else url_map |
|
from torch.utils import model_zoo |
|
state_dict = model_zoo.load_url(url_map_[model_name], map_location=torch.device('cpu')) |
|
|
|
if load_fc: |
|
ret = model.load_state_dict(state_dict, strict=False) |
|
print(ret) |
|
else: |
|
state_dict.pop('_fc.weight') |
|
state_dict.pop('_fc.bias') |
|
res = model.load_state_dict(state_dict, strict=False) |
|
assert set(res.missing_keys) == set(['_fc.weight', '_fc.bias']), 'issue loading pretrained weights' |
|
print('Loaded pretrained weights for {}'.format(model_name)) |
|
|
|
class EfficientNet(nn.Module): |
|
""" |
|
An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods |
|
|
|
Args: |
|
blocks_args (list): A list of BlockArgs to construct blocks |
|
global_params (namedtuple): A set of GlobalParams shared between blocks |
|
|
|
Example: |
|
model = EfficientNet.from_pretrained('efficientnet-b0') |
|
|
|
""" |
|
|
|
def __init__(self, blocks_args=None, global_params=None): |
|
super().__init__() |
|
assert isinstance(blocks_args, list), 'blocks_args should be a list' |
|
assert len(blocks_args) > 0, 'block args must be greater than 0' |
|
self._global_params = global_params |
|
self._blocks_args = blocks_args |
|
|
|
|
|
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) |
|
|
|
|
|
bn_mom = 1 - self._global_params.batch_norm_momentum |
|
bn_eps = self._global_params.batch_norm_epsilon |
|
|
|
|
|
in_channels = 3 |
|
out_channels = round_filters(32, self._global_params) |
|
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) |
|
self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) |
|
|
|
|
|
self._blocks = nn.ModuleList([]) |
|
for block_args in self._blocks_args: |
|
|
|
|
|
block_args = block_args._replace( |
|
input_filters=round_filters(block_args.input_filters, self._global_params), |
|
output_filters=round_filters(block_args.output_filters, self._global_params), |
|
num_repeat=round_repeats(block_args.num_repeat, self._global_params) |
|
) |
|
|
|
|
|
self._blocks.append(MBConvBlock(block_args, self._global_params)) |
|
if block_args.num_repeat > 1: |
|
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) |
|
for _ in range(block_args.num_repeat - 1): |
|
self._blocks.append(MBConvBlock(block_args, self._global_params)) |
|
|
|
|
|
in_channels = block_args.output_filters |
|
out_channels = round_filters(1280, self._global_params) |
|
self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) |
|
self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) |
|
|
|
|
|
self._avg_pooling = nn.AdaptiveAvgPool2d(1) |
|
self._dropout = nn.Dropout(self._global_params.dropout_rate) |
|
self._fc = nn.Linear(out_channels, self._global_params.num_classes) |
|
self._swish = MemoryEfficientSwish() |
|
|
|
def set_swish(self, memory_efficient=True): |
|
"""Sets swish function as memory efficient (for training) or standard (for export)""" |
|
self._swish = MemoryEfficientSwish() if memory_efficient else Swish() |
|
for block in self._blocks: |
|
block.set_swish(memory_efficient) |
|
|
|
def extract_features(self, inputs): |
|
""" Returns output of the final convolution layer """ |
|
|
|
|
|
x = self._swish(self._bn0(self._conv_stem(inputs))) |
|
|
|
|
|
for idx, block in enumerate(self._blocks): |
|
drop_connect_rate = self._global_params.drop_connect_rate |
|
if drop_connect_rate: |
|
drop_connect_rate *= float(idx) / len(self._blocks) |
|
x = block(x, drop_connect_rate=drop_connect_rate) |
|
|
|
x = self._swish(self._bn1(self._conv_head(x))) |
|
|
|
return x |
|
|
|
def forward(self, inputs): |
|
""" Calls extract_features to extract features, applies final linear layer, and returns logits. """ |
|
bs = inputs.size(0) |
|
|
|
x = self.extract_features(inputs) |
|
|
|
|
|
x = self._avg_pooling(x) |
|
x = x.view(bs, -1) |
|
x = self._dropout(x) |
|
x = self._fc(x) |
|
return x |
|
|
|
@classmethod |
|
def from_name(cls, model_name, override_params=None): |
|
cls._check_model_name_is_valid(model_name) |
|
blocks_args, global_params = get_model_params(model_name, override_params) |
|
return cls(blocks_args, global_params) |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_name, load_weights=True, advprop=True, num_classes=1000, in_channels=3): |
|
model = cls.from_name(model_name, override_params={'num_classes': num_classes}) |
|
if load_weights: |
|
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000), advprop=advprop) |
|
if in_channels != 3: |
|
Conv2d = get_same_padding_conv2d(image_size = model._global_params.image_size) |
|
out_channels = round_filters(32, model._global_params) |
|
model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) |
|
return model |
|
|
|
@classmethod |
|
def get_image_size(cls, model_name): |
|
cls._check_model_name_is_valid(model_name) |
|
_, _, res, _ = efficientnet_params(model_name) |
|
return res |
|
|
|
@classmethod |
|
def _check_model_name_is_valid(cls, model_name): |
|
""" Validates model name. """ |
|
valid_models = ['efficientnet-b'+str(i) for i in range(9)] |
|
if model_name not in valid_models: |
|
raise ValueError('model_name should be one of: ' + ', '.join(valid_models)) |
|
|
|
class EfficientNetD(nn.Module): |
|
""" |
|
modified by Zylo117 |
|
""" |
|
|
|
def __init__(self, compound_coef, load_weights=False): |
|
super().__init__() |
|
model = EfficientNet.from_pretrained(f'efficientnet-b{compound_coef}', load_weights) |
|
del model._conv_head |
|
del model._bn1 |
|
del model._avg_pooling |
|
del model._dropout |
|
del model._fc |
|
self.model = model |
|
|
|
def forward(self, x): |
|
x = self.model._conv_stem(x) |
|
x = self.model._bn0(x) |
|
x = self.model._swish(x) |
|
feature_maps = [] |
|
|
|
|
|
|
|
|
|
last_x = None |
|
for idx, block in enumerate(self.model._blocks): |
|
drop_connect_rate = self.model._global_params.drop_connect_rate |
|
if drop_connect_rate: |
|
drop_connect_rate *= float(idx) / len(self.model._blocks) |
|
x = block(x, drop_connect_rate=drop_connect_rate) |
|
|
|
if tuple(block._depthwise_conv.stride) == (2, 2): |
|
feature_maps.append(last_x) |
|
elif idx == len(self.model._blocks) - 1: |
|
feature_maps.append(x) |
|
last_x = x |
|
del last_x |
|
return feature_maps[1:] |
|
|
|
class Anchors(nn.Module): |
|
""" |
|
adapted and modified from https://github.com/google/automl/blob/master/efficientdet/anchors.py by Zylo117 |
|
""" |
|
|
|
def __init__(self, anchor_scale=4., pyramid_levels=None, **kwargs): |
|
super().__init__() |
|
from qd.qd_common import print_frame_info |
|
print_frame_info() |
|
self.anchor_scale = anchor_scale |
|
|
|
if pyramid_levels is None: |
|
self.pyramid_levels = [3, 4, 5, 6, 7] |
|
|
|
self.strides = kwargs.get('strides', [2 ** x for x in self.pyramid_levels]) |
|
self.scales = np.array(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])) |
|
self.ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) |
|
|
|
self.buffer = {} |
|
|
|
@torch.no_grad() |
|
def forward(self, image, dtype=torch.float32, features=None): |
|
"""Generates multiscale anchor boxes. |
|
|
|
Args: |
|
image_size: integer number of input image size. The input image has the |
|
same dimension for width and height. The image_size should be divided by |
|
the largest feature stride 2^max_level. |
|
anchor_scale: float number representing the scale of size of the base |
|
anchor to the feature stride 2^level. |
|
anchor_configs: a dictionary with keys as the levels of anchors and |
|
values as a list of anchor configuration. |
|
|
|
Returns: |
|
anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all |
|
feature levels. |
|
Raises: |
|
ValueError: input size must be the multiple of largest feature stride. |
|
""" |
|
image_shape = image.shape[2:] |
|
anchor_key = self.get_key('anchor', image_shape) |
|
stride_idx_key = self.get_key('anchor_stride_index', image_shape) |
|
|
|
if anchor_key in self.buffer: |
|
return {'stride_idx': self.buffer[stride_idx_key].detach(), |
|
'anchor': self.buffer[anchor_key].detach()} |
|
|
|
if dtype == torch.float16: |
|
dtype = np.float16 |
|
else: |
|
dtype = np.float32 |
|
|
|
boxes_all = [] |
|
all_idx_strides = [] |
|
for idx_stride, stride in enumerate(self.strides): |
|
boxes_level = [] |
|
for scale, ratio in itertools.product(self.scales, self.ratios): |
|
if features is not None: |
|
f_h, f_w = features[idx_stride].shape[-2:] |
|
x = np.arange(stride / 2, stride * f_w, stride) |
|
y = np.arange(stride / 2, stride * f_h, stride) |
|
else: |
|
if image_shape[1] % stride != 0: |
|
x_max = stride * ((image_shape[1] + stride - 1) // stride) |
|
y_max = stride * ((image_shape[0] + stride - 1) // stride) |
|
else: |
|
x_max = image_shape[1] |
|
y_max = image_shape[0] |
|
x = np.arange(stride / 2, x_max, stride) |
|
y = np.arange(stride / 2, y_max, stride) |
|
xv, yv = np.meshgrid(x, y) |
|
xv = xv.reshape(-1) |
|
yv = yv.reshape(-1) |
|
|
|
base_anchor_size = self.anchor_scale * stride * scale |
|
anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0 |
|
anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0 |
|
|
|
boxes = np.vstack((yv - anchor_size_y_2, xv - anchor_size_x_2, |
|
yv + anchor_size_y_2, xv + anchor_size_x_2)) |
|
boxes = np.swapaxes(boxes, 0, 1) |
|
boxes_level.append(np.expand_dims(boxes, axis=1)) |
|
|
|
boxes_level = np.concatenate(boxes_level, axis=1) |
|
boxes_level = boxes_level.reshape([-1, 4]) |
|
idx_strides = torch.tensor([idx_stride] * len(boxes_level)) |
|
all_idx_strides.append(idx_strides) |
|
boxes_all.append(boxes_level) |
|
|
|
anchor_boxes = np.vstack(boxes_all) |
|
anchor_stride_indices = torch.cat(all_idx_strides).to(image.device) |
|
|
|
self.buffer[stride_idx_key] = anchor_stride_indices |
|
|
|
anchor_boxes = torch.from_numpy(anchor_boxes.astype(dtype)).to(image.device) |
|
anchor_boxes = anchor_boxes.unsqueeze(0) |
|
|
|
|
|
self.buffer[anchor_key] = anchor_boxes |
|
|
|
return {'stride_idx': self.buffer[stride_idx_key], |
|
'anchor': self.buffer[anchor_key]} |
|
|
|
def get_key(self, hint, image_shape): |
|
return '{}_{}'.format(hint, '_'.join(map(str, image_shape))) |
|
|
|
class EffNetFPN(nn.Module): |
|
def __init__(self, compound_coef=0, start_from=3): |
|
super().__init__() |
|
|
|
self.backbone_net = EfficientNetD(EfficientDetBackbone.backbone_compound_coef[compound_coef], |
|
load_weights=False) |
|
if start_from == 3: |
|
conv_channel_coef = EfficientDetBackbone.conv_channel_coef[compound_coef] |
|
else: |
|
conv_channel_coef = EfficientDetBackbone.conv_channel_coef2345[compound_coef] |
|
self.bifpn = nn.Sequential( |
|
*[BiFPN(EfficientDetBackbone.fpn_num_filters[compound_coef], |
|
conv_channel_coef, |
|
True if _ == 0 else False, |
|
attention=True if compound_coef < 6 else False, |
|
adaptive_up=True) |
|
for _ in range(EfficientDetBackbone.fpn_cell_repeats[compound_coef])]) |
|
|
|
self.out_channels = EfficientDetBackbone.fpn_num_filters[compound_coef] |
|
|
|
self.start_from = start_from |
|
assert self.start_from in [2, 3] |
|
|
|
def forward(self, inputs): |
|
if self.start_from == 3: |
|
_, p3, p4, p5 = self.backbone_net(inputs) |
|
|
|
features = (p3, p4, p5) |
|
features = self.bifpn(features) |
|
return features |
|
else: |
|
p2, p3, p4, p5 = self.backbone_net(inputs) |
|
features = (p2, p3, p4, p5) |
|
features = self.bifpn(features) |
|
return features |
|
|
|
class EfficientDetBackbone(nn.Module): |
|
backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6] |
|
fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384] |
|
conv_channel_coef = { |
|
|
|
0: [40, 112, 320], |
|
1: [40, 112, 320], |
|
2: [48, 120, 352], |
|
3: [48, 136, 384], |
|
4: [56, 160, 448], |
|
5: [64, 176, 512], |
|
6: [72, 200, 576], |
|
7: [72, 200, 576], |
|
} |
|
conv_channel_coef2345 = { |
|
|
|
0: [24, 40, 112, 320], |
|
|
|
1: [24, 40, 112, 320], |
|
2: [24, 48, 120, 352], |
|
3: [32, 48, 136, 384], |
|
4: [32, 56, 160, 448], |
|
5: [40, 64, 176, 512], |
|
6: [72, 200], |
|
7: [72, 200], |
|
} |
|
fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8] |
|
def __init__(self, num_classes=80, compound_coef=0, load_weights=False, |
|
prior_prob=0.01, **kwargs): |
|
super(EfficientDetBackbone, self).__init__() |
|
self.compound_coef = compound_coef |
|
|
|
self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536] |
|
self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5] |
|
self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.] |
|
self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) |
|
self.num_scales = len(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])) |
|
|
|
num_anchors = len(self.aspect_ratios) * self.num_scales |
|
|
|
self.bifpn = nn.Sequential( |
|
*[BiFPN(self.fpn_num_filters[self.compound_coef], |
|
self.conv_channel_coef[compound_coef], |
|
True if _ == 0 else False, |
|
attention=True if compound_coef < 6 else False, |
|
adaptive_up=kwargs.get('adaptive_up')) |
|
for _ in range(self.fpn_cell_repeats[compound_coef])]) |
|
|
|
self.num_classes = num_classes |
|
self.regressor = Regressor(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, |
|
num_layers=self.box_class_repeats[self.compound_coef]) |
|
self.classifier = Classifier(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, |
|
num_classes=num_classes, |
|
num_layers=self.box_class_repeats[self.compound_coef], |
|
prior_prob=prior_prob) |
|
anchor_scale = self.anchor_scale[compound_coef] |
|
if kwargs.get('anchor_scale'): |
|
anchor_scale = kwargs.pop('anchor_scale') |
|
if 'anchor_scale' in kwargs: |
|
del kwargs['anchor_scale'] |
|
self.anchors = Anchors(anchor_scale=anchor_scale, **kwargs) |
|
|
|
self.backbone_net = EfficientNetD(self.backbone_compound_coef[compound_coef], load_weights) |
|
|
|
def freeze_bn(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
m.eval() |
|
|
|
def forward(self, inputs): |
|
_, p3, p4, p5 = self.backbone_net(inputs) |
|
|
|
features = (p3, p4, p5) |
|
features = self.bifpn(features) |
|
|
|
regression = self.regressor(features) |
|
classification = self.classifier(features) |
|
anchors = self.anchors(inputs, inputs.dtype, features=features) |
|
|
|
return features, regression, classification, anchors |
|
|
|
def init_backbone(self, path): |
|
state_dict = torch.load(path) |
|
try: |
|
ret = self.load_state_dict(state_dict, strict=False) |
|
print(ret) |
|
except RuntimeError as e: |
|
print('Ignoring ' + str(e) + '"') |
|
|
|
def init_weights(model): |
|
for name, module in model.named_modules(): |
|
is_conv_layer = isinstance(module, nn.Conv2d) |
|
|
|
if is_conv_layer: |
|
nn.init.kaiming_uniform_(module.weight.data) |
|
|
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def calc_iou(a, b): |
|
|
|
|
|
|
|
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) |
|
iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0]) |
|
ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1]) |
|
iw = torch.clamp(iw, min=0) |
|
ih = torch.clamp(ih, min=0) |
|
ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih |
|
ua = torch.clamp(ua, min=1e-8) |
|
intersection = iw * ih |
|
IoU = intersection / ua |
|
|
|
return IoU |
|
|
|
class BBoxTransform(nn.Module): |
|
def forward(self, anchors, regression): |
|
""" |
|
decode_box_outputs adapted from https://github.com/google/automl/blob/master/efficientdet/anchors.py |
|
|
|
Args: |
|
anchors: [batchsize, boxes, (y1, x1, y2, x2)] |
|
regression: [batchsize, boxes, (dy, dx, dh, dw)] |
|
|
|
Returns: |
|
|
|
""" |
|
y_centers_a = (anchors[..., 0] + anchors[..., 2]) / 2 |
|
x_centers_a = (anchors[..., 1] + anchors[..., 3]) / 2 |
|
ha = anchors[..., 2] - anchors[..., 0] |
|
wa = anchors[..., 3] - anchors[..., 1] |
|
|
|
w = regression[..., 3].exp() * wa |
|
h = regression[..., 2].exp() * ha |
|
|
|
y_centers = regression[..., 0] * ha + y_centers_a |
|
x_centers = regression[..., 1] * wa + x_centers_a |
|
|
|
ymin = y_centers - h / 2. |
|
xmin = x_centers - w / 2. |
|
ymax = y_centers + h / 2. |
|
xmax = x_centers + w / 2. |
|
if len(anchors.shape) == 3: |
|
return torch.stack([xmin, ymin, xmax, ymax], dim=2) |
|
else: |
|
return torch.stack([xmin, ymin, xmax, ymax], dim=1) |
|
|
|
|
|
class ClipBoxes(nn.Module): |
|
|
|
def __init__(self): |
|
super(ClipBoxes, self).__init__() |
|
|
|
def forward(self, boxes, img): |
|
batch_size, num_channels, height, width = img.shape |
|
|
|
boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) |
|
boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) |
|
|
|
boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width - 1) |
|
boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height - 1) |
|
|
|
return boxes |
|
|
|
def postprocess2(x, anchors, regression, classification, |
|
transformed_anchors, threshold, iou_threshold, max_box): |
|
anchors = anchors['anchor'] |
|
all_above_th = classification > threshold |
|
out = [] |
|
num_image = x.shape[0] |
|
num_class = classification.shape[-1] |
|
|
|
|
|
|
|
|
|
max_box_pre_nms = 1000 |
|
for i in range(num_image): |
|
all_rois = [] |
|
all_class_ids = [] |
|
all_scores = [] |
|
for c in range(num_class): |
|
above_th = all_above_th[i, :, c].nonzero() |
|
if len(above_th) == 0: |
|
continue |
|
above_prob = classification[i, above_th, c].squeeze(1) |
|
if len(above_th) > max_box_pre_nms: |
|
_, idx = above_prob.topk(max_box_pre_nms) |
|
above_th = above_th[idx] |
|
above_prob = above_prob[idx] |
|
transformed_anchors_per = transformed_anchors[i,above_th,:].squeeze(dim=1) |
|
from torchvision.ops import nms |
|
nms_idx = nms(transformed_anchors_per, above_prob, iou_threshold=iou_threshold) |
|
if len(nms_idx) > 0: |
|
all_rois.append(transformed_anchors_per[nms_idx]) |
|
ids = torch.tensor([c] * len(nms_idx)) |
|
all_class_ids.append(ids) |
|
all_scores.append(above_prob[nms_idx]) |
|
|
|
if len(all_rois) > 0: |
|
rois = torch.cat(all_rois) |
|
class_ids = torch.cat(all_class_ids) |
|
scores = torch.cat(all_scores) |
|
if len(scores) > max_box: |
|
_, idx = torch.topk(scores, max_box) |
|
rois = rois[idx, :] |
|
class_ids = class_ids[idx] |
|
scores = scores[idx] |
|
out.append({ |
|
'rois': rois, |
|
'class_ids': class_ids, |
|
'scores': scores, |
|
}) |
|
else: |
|
out.append({ |
|
'rois': [], |
|
'class_ids': [], |
|
'scores': [], |
|
}) |
|
|
|
return out |
|
|
|
def postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold): |
|
anchors = anchors['anchor'] |
|
transformed_anchors = regressBoxes(anchors, regression) |
|
transformed_anchors = clipBoxes(transformed_anchors, x) |
|
scores = torch.max(classification, dim=2, keepdim=True)[0] |
|
scores_over_thresh = (scores > threshold)[:, :, 0] |
|
out = [] |
|
for i in range(x.shape[0]): |
|
if scores_over_thresh.sum() == 0: |
|
out.append({ |
|
'rois': [], |
|
'class_ids': [], |
|
'scores': [], |
|
}) |
|
continue |
|
|
|
classification_per = classification[i, scores_over_thresh[i, :], ...].permute(1, 0) |
|
transformed_anchors_per = transformed_anchors[i, scores_over_thresh[i, :], ...] |
|
scores_per = scores[i, scores_over_thresh[i, :], ...] |
|
from torchvision.ops import nms |
|
anchors_nms_idx = nms(transformed_anchors_per, scores_per[:, 0], iou_threshold=iou_threshold) |
|
|
|
if anchors_nms_idx.shape[0] != 0: |
|
scores_, classes_ = classification_per[:, anchors_nms_idx].max(dim=0) |
|
boxes_ = transformed_anchors_per[anchors_nms_idx, :] |
|
|
|
out.append({ |
|
'rois': boxes_, |
|
'class_ids': classes_, |
|
'scores': scores_, |
|
}) |
|
else: |
|
out.append({ |
|
'rois': [], |
|
'class_ids': [], |
|
'scores': [], |
|
}) |
|
|
|
return out |
|
|
|
def display(preds, imgs, obj_list, imshow=True, imwrite=False): |
|
for i in range(len(imgs)): |
|
if len(preds[i]['rois']) == 0: |
|
continue |
|
|
|
for j in range(len(preds[i]['rois'])): |
|
(x1, y1, x2, y2) = preds[i]['rois'][j].detach().cpu().numpy().astype(np.int) |
|
logging.info((x1, y1, x2, y2)) |
|
cv2.rectangle(imgs[i], (x1, y1), (x2, y2), (255, 255, 0), 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if imshow: |
|
cv2.imshow('image', imgs[i]) |
|
cv2.waitKey(0) |
|
|
|
def calculate_focal_loss2(classification, target_list, alpha, gamma): |
|
from maskrcnn_benchmark.layers.sigmoid_focal_loss import sigmoid_focal_loss_cuda |
|
cls_loss = sigmoid_focal_loss_cuda(classification, target_list.int(), gamma, alpha) |
|
return cls_loss |
|
|
|
def calculate_focal_loss(classification, targets, alpha, gamma): |
|
classification = classification.sigmoid() |
|
device = classification.device |
|
alpha_factor = torch.ones_like(targets) * alpha |
|
alpha_factor = alpha_factor.to(device) |
|
|
|
alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor) |
|
focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification) |
|
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) |
|
|
|
bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification)) |
|
|
|
cls_loss = focal_weight * bce |
|
|
|
zeros = torch.zeros_like(cls_loss) |
|
zeros = zeros.to(device) |
|
cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros) |
|
return cls_loss.mean() |
|
|
|
def calculate_giou(pred, gt): |
|
ax1, ay1, ax2, ay2 = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3] |
|
bx1, by1, bx2, by2 = gt[:, 0], gt[:, 1], gt[:, 2], gt[:, 3] |
|
a = (ax2 - ax1) * (ay2 - ay1) |
|
b = (bx2 - bx1) * (by2 - by1) |
|
max_x1, _ = torch.max(torch.stack([ax1, bx1], dim=1), dim=1) |
|
max_y1, _ = torch.max(torch.stack([ay1, by1], dim=1), dim=1) |
|
min_x2, _ = torch.min(torch.stack([ax2, bx2], dim=1), dim=1) |
|
min_y2, _ = torch.min(torch.stack([ay2, by2], dim=1), dim=1) |
|
inter = (min_x2 > max_x1) * (min_y2 > max_y1) |
|
inter = inter * (min_x2 - max_x1) * (min_y2 - max_y1) |
|
|
|
min_x1, _ = torch.min(torch.stack([ax1, bx1], dim=1), dim=1) |
|
min_y1, _ = torch.min(torch.stack([ay1, by1], dim=1), dim=1) |
|
max_x2, _ = torch.max(torch.stack([ax2, bx2], dim=1), dim=1) |
|
max_y2, _ = torch.max(torch.stack([ay2, by2], dim=1), dim=1) |
|
cover = (max_x2 - min_x1) * (max_y2 - min_y1) |
|
union = a + b - inter |
|
iou = inter / (union + 1e-5) |
|
giou = iou - (cover - union) / (cover + 1e-5) |
|
return giou |
|
|
|
class FocalLoss(nn.Module): |
|
def __init__(self, alpha=0.25, gamma=2., cls_loss_type='FL', smooth_bce_pos=0.99, |
|
smooth_bce_neg=0.01, |
|
reg_loss_type='L1', |
|
at_least_1_assgin=False, |
|
neg_iou_th=0.4, |
|
pos_iou_th=0.5, |
|
cls_weight=1., |
|
reg_weight=1., |
|
): |
|
super(FocalLoss, self).__init__() |
|
from qd.qd_common import print_frame_info |
|
print_frame_info() |
|
self.iter = 0 |
|
self.reg_loss_type = reg_loss_type |
|
self.regressBoxes = BBoxTransform() |
|
if cls_loss_type == 'FL': |
|
from qd.layers.loss import FocalLossWithLogitsNegLoss |
|
self.cls_loss = FocalLossWithLogitsNegLoss(alpha, gamma) |
|
elif cls_loss_type == 'BCE': |
|
from qd.qd_pytorch import BCEWithLogitsNegLoss |
|
self.cls_loss = BCEWithLogitsNegLoss(reduction='sum') |
|
elif cls_loss_type == 'SmoothBCE': |
|
from qd.layers.loss import SmoothBCEWithLogitsNegLoss |
|
self.cls_loss = SmoothBCEWithLogitsNegLoss( |
|
pos=smooth_bce_pos, neg=smooth_bce_neg) |
|
elif cls_loss_type == 'SmoothFL': |
|
from qd.layers.loss import FocalSmoothBCEWithLogitsNegLoss |
|
self.cls_loss = FocalSmoothBCEWithLogitsNegLoss( |
|
alpha=alpha, gamma=2., |
|
pos=smooth_bce_pos, neg=smooth_bce_neg) |
|
else: |
|
raise NotImplementedError(cls_loss_type) |
|
self.at_least_1_assgin = at_least_1_assgin |
|
|
|
self.gt_total = 0 |
|
self.gt_saved_by_at_least = 0 |
|
|
|
self.neg_iou_th = neg_iou_th |
|
self.pos_iou_th = pos_iou_th |
|
|
|
self.cls_weight = cls_weight |
|
self.reg_weight = reg_weight |
|
|
|
self.buf = {} |
|
|
|
def forward(self, classifications, regressions, anchor_info, annotations, **kwargs): |
|
debug = (self.iter % 100) == 0 |
|
self.iter += 1 |
|
if debug: |
|
from collections import defaultdict |
|
debug_info = defaultdict(list) |
|
|
|
batch_size = classifications.shape[0] |
|
classification_losses = [] |
|
regression_losses = [] |
|
anchors = anchor_info['anchor'] |
|
anchor = anchors[0, :, :] |
|
dtype = anchors.dtype |
|
|
|
anchor_widths = anchor[:, 3] - anchor[:, 1] |
|
anchor_heights = anchor[:, 2] - anchor[:, 0] |
|
anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths |
|
anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights |
|
|
|
|
|
|
|
|
|
|
|
device = classifications.device |
|
|
|
for j in range(batch_size): |
|
|
|
classification = classifications[j, :, :] |
|
regression = regressions[j, :, :] |
|
|
|
bbox_annotation = annotations[j] |
|
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1] |
|
|
|
|
|
|
|
if bbox_annotation.shape[0] == 0: |
|
|
|
|
|
|
|
|
|
cls_loss = torch.tensor(0).to(dtype).to(device) |
|
regression_losses.append(torch.tensor(0).to(dtype).to(device)) |
|
classification_losses.append(cls_loss) |
|
continue |
|
|
|
IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4]) |
|
|
|
IoU_max, IoU_argmax = torch.max(IoU, dim=1) |
|
if self.at_least_1_assgin: |
|
iou_max_gt, iou_argmax_gt = torch.max(IoU, dim=0) |
|
curr_saved = (iou_max_gt < self.pos_iou_th).sum() |
|
self.gt_saved_by_at_least += curr_saved |
|
self.gt_total += len(iou_argmax_gt) |
|
IoU_max[iou_argmax_gt] = 1. |
|
IoU_argmax[iou_argmax_gt] = torch.arange(len(iou_argmax_gt)).to(device) |
|
|
|
|
|
targets = torch.ones_like(classification) * -1 |
|
targets = targets.to(device) |
|
|
|
targets[torch.lt(IoU_max, self.neg_iou_th), :] = 0 |
|
|
|
positive_indices = torch.ge(IoU_max, self.pos_iou_th) |
|
|
|
num_positive_anchors = positive_indices.sum() |
|
|
|
assigned_annotations = bbox_annotation[IoU_argmax, :] |
|
|
|
targets[positive_indices, :] = 0 |
|
targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1 |
|
|
|
if debug: |
|
if num_positive_anchors > 0: |
|
debug_info['pos_conf'].append(classification[ |
|
positive_indices, |
|
assigned_annotations[positive_indices, 4].long()].mean()) |
|
debug_info['neg_conf'].append(classification[targets == 0].mean()) |
|
stride_idx = anchor_info['stride_idx'] |
|
positive_stride_idx = stride_idx[positive_indices] |
|
pos_count_each_stride = torch.tensor( |
|
[(positive_stride_idx == i).sum() for i in range(5)]) |
|
if 'cum_pos_count_each_stride' not in self.buf: |
|
self.buf['cum_pos_count_each_stride'] = pos_count_each_stride |
|
else: |
|
cum_pos_count_each_stride = self.buf['cum_pos_count_each_stride'] |
|
cum_pos_count_each_stride += pos_count_each_stride |
|
self.buf['cum_pos_count_each_stride'] = cum_pos_count_each_stride |
|
|
|
|
|
|
|
cls_loss = self.cls_loss(classification, targets) |
|
|
|
cls_loss = cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0) |
|
assert cls_loss == cls_loss |
|
classification_losses.append(cls_loss) |
|
|
|
if positive_indices.sum() > 0: |
|
assigned_annotations = assigned_annotations[positive_indices, :] |
|
if self.reg_loss_type == 'L1': |
|
anchor_widths_pi = anchor_widths[positive_indices] |
|
anchor_heights_pi = anchor_heights[positive_indices] |
|
anchor_ctr_x_pi = anchor_ctr_x[positive_indices] |
|
anchor_ctr_y_pi = anchor_ctr_y[positive_indices] |
|
|
|
gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0] |
|
gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1] |
|
gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths |
|
gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights |
|
|
|
|
|
gt_widths = torch.clamp(gt_widths, min=1) |
|
gt_heights = torch.clamp(gt_heights, min=1) |
|
|
|
targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi |
|
targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi |
|
targets_dw = torch.log(gt_widths / anchor_widths_pi) |
|
targets_dh = torch.log(gt_heights / anchor_heights_pi) |
|
|
|
targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw)) |
|
targets = targets.t() |
|
|
|
regression_diff = torch.abs(targets - regression[positive_indices, :]) |
|
|
|
regression_loss = torch.where( |
|
torch.le(regression_diff, 1.0 / 9.0), |
|
0.5 * 9.0 * torch.pow(regression_diff, 2), |
|
regression_diff - 0.5 / 9.0 |
|
).mean() |
|
elif self.reg_loss_type == 'GIOU': |
|
curr_regression = regression[positive_indices, :] |
|
curr_anchors = anchor[positive_indices] |
|
curr_pred_xyxy = self.regressBoxes(curr_anchors, |
|
curr_regression) |
|
regression_loss = 1.- calculate_giou(curr_pred_xyxy, assigned_annotations) |
|
regression_loss = regression_loss.mean() |
|
assert regression_loss == regression_loss |
|
else: |
|
raise NotImplementedError |
|
regression_losses.append(regression_loss) |
|
else: |
|
if torch.cuda.is_available(): |
|
regression_losses.append(torch.tensor(0).to(dtype).cuda()) |
|
else: |
|
regression_losses.append(torch.tensor(0).to(dtype)) |
|
if debug: |
|
if len(debug_info) > 0: |
|
logging.info('pos = {}; neg = {}, saved_ratio = {}/{}={:.1f}, ' |
|
'stride_info = {}' |
|
.format( |
|
torch.tensor(debug_info['pos_conf']).mean(), |
|
torch.tensor(debug_info['neg_conf']).mean(), |
|
self.gt_saved_by_at_least, |
|
self.gt_total, |
|
1. * self.gt_saved_by_at_least / self.gt_total, |
|
self.buf['cum_pos_count_each_stride'], |
|
)) |
|
return self.cls_weight * torch.stack(classification_losses).mean(dim=0, keepdim=True), \ |
|
self.reg_weight * torch.stack(regression_losses).mean(dim=0, keepdim=True) |
|
|
|
class ModelWithLoss(nn.Module): |
|
def __init__(self, model, criterion): |
|
super().__init__() |
|
self.criterion = criterion |
|
self.module = model |
|
|
|
def forward(self, *args): |
|
if len(args) == 2: |
|
imgs, annotations = args |
|
elif len(args) == 1: |
|
imgs, annotations = args[0][:2] |
|
_, regression, classification, anchors = self.module(imgs) |
|
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations) |
|
return {'cls_loss': cls_loss, 'reg_loss': reg_loss} |
|
|
|
class TorchVisionNMS(nn.Module): |
|
def __init__(self, iou_threshold): |
|
super().__init__() |
|
self.iou_threshold = iou_threshold |
|
|
|
def forward(self, box, prob): |
|
nms_idx = nms(box, prob, iou_threshold=self.iou_threshold) |
|
return nms_idx |
|
|
|
class PostProcess(nn.Module): |
|
def __init__(self, iou_threshold): |
|
super().__init__() |
|
self.nms = TorchVisionNMS(iou_threshold) |
|
|
|
def forward(self, x, anchors, regression, |
|
classification, |
|
transformed_anchors, threshold, max_box): |
|
all_above_th = classification > threshold |
|
out = [] |
|
num_image = x.shape[0] |
|
num_class = classification.shape[-1] |
|
|
|
|
|
|
|
|
|
max_box_pre_nms = 1000 |
|
for i in range(num_image): |
|
all_rois = [] |
|
all_class_ids = [] |
|
all_scores = [] |
|
for c in range(num_class): |
|
above_th = all_above_th[i, :, c].nonzero() |
|
if len(above_th) == 0: |
|
continue |
|
above_prob = classification[i, above_th, c].squeeze(1) |
|
if len(above_th) > max_box_pre_nms: |
|
_, idx = above_prob.topk(max_box_pre_nms) |
|
above_th = above_th[idx] |
|
above_prob = above_prob[idx] |
|
transformed_anchors_per = transformed_anchors[i,above_th,:].squeeze(dim=1) |
|
nms_idx = self.nms(transformed_anchors_per, above_prob) |
|
if len(nms_idx) > 0: |
|
all_rois.append(transformed_anchors_per[nms_idx]) |
|
ids = torch.tensor([c] * len(nms_idx)) |
|
all_class_ids.append(ids) |
|
all_scores.append(above_prob[nms_idx]) |
|
|
|
if len(all_rois) > 0: |
|
rois = torch.cat(all_rois) |
|
class_ids = torch.cat(all_class_ids) |
|
scores = torch.cat(all_scores) |
|
if len(scores) > max_box: |
|
_, idx = torch.topk(scores, max_box) |
|
rois = rois[idx, :] |
|
class_ids = class_ids[idx] |
|
scores = scores[idx] |
|
out.append({ |
|
'rois': rois, |
|
'class_ids': class_ids, |
|
'scores': scores, |
|
}) |
|
else: |
|
out.append({ |
|
'rois': [], |
|
'class_ids': [], |
|
'scores': [], |
|
}) |
|
|
|
return out |
|
|
|
class InferenceModel(nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.module = model |
|
|
|
self.regressBoxes = BBoxTransform() |
|
self.clipBoxes = ClipBoxes() |
|
self.threshold = 0.01 |
|
self.nms_threshold = 0.5 |
|
self.max_box = 100 |
|
self.debug = False |
|
self.post_process = PostProcess(self.nms_threshold) |
|
|
|
def forward(self, sample): |
|
features, regression, classification, anchor_info = self.module(sample['image']) |
|
anchors = anchor_info['anchor'] |
|
classification = classification.sigmoid() |
|
transformed_anchors = self.regressBoxes(anchors, regression) |
|
transformed_anchors = self.clipBoxes(transformed_anchors, sample['image']) |
|
|
|
preds = self.post_process(sample['image'], anchors, regression, |
|
classification, transformed_anchors, |
|
self.threshold, self.max_box) |
|
|
|
if self.debug: |
|
logging.info('debugging') |
|
imgs = sample['image'] |
|
imgs = imgs.permute(0, 2, 3, 1).cpu().numpy() |
|
imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8) |
|
imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs] |
|
display(preds, imgs, list(map(str, range(80)))) |
|
|
|
for p, s in zip(preds, sample['scale']): |
|
if len(p['rois']) > 0: |
|
p['rois'] /= s |
|
return preds |
|
|
|
|