|
""" |
|
EfficientNet for ImageNet-1K, implemented in PyTorch. |
|
Original papers: |
|
- 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946, |
|
- 'Adversarial Examples Improve Image Recognition,' https://arxiv.org/abs/1911.09665. |
|
""" |
|
|
|
import os |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from maskrcnn_benchmark.layers import SEBlock, swish |
|
|
|
|
|
def round_channels(channels, |
|
divisor=8): |
|
""" |
|
Round weighted channel number (make divisible operation). |
|
|
|
Parameters: |
|
---------- |
|
channels : int or float |
|
Original number of channels. |
|
divisor : int, default 8 |
|
Alignment value. |
|
|
|
Returns |
|
------- |
|
int |
|
Weighted number of channels. |
|
""" |
|
rounded_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor) |
|
if float(rounded_channels) < 0.9 * channels: |
|
rounded_channels += divisor |
|
return rounded_channels |
|
|
|
|
|
def calc_tf_padding(x, |
|
kernel_size, |
|
stride=1, |
|
dilation=1): |
|
""" |
|
Calculate TF-same like padding size. |
|
|
|
Parameters: |
|
---------- |
|
x : tensor |
|
Input tensor. |
|
kernel_size : int |
|
Convolution window size. |
|
stride : int, default 1 |
|
Strides of the convolution. |
|
dilation : int, default 1 |
|
Dilation value for convolution layer. |
|
|
|
Returns |
|
------- |
|
tuple of 4 int |
|
The size of the padding. |
|
""" |
|
height, width = x.size()[2:] |
|
oh = math.ceil(height / stride) |
|
ow = math.ceil(width / stride) |
|
pad_h = max((oh - 1) * stride + (kernel_size - 1) * dilation + 1 - height, 0) |
|
pad_w = max((ow - 1) * stride + (kernel_size - 1) * dilation + 1 - width, 0) |
|
return pad_h // 2, pad_h - pad_h // 2, pad_w // 2, pad_w - pad_w // 2 |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
""" |
|
Standard convolution block with Batch normalization and activation. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
kernel_size : int or tuple/list of 2 int |
|
Convolution window size. |
|
stride : int or tuple/list of 2 int |
|
Strides of the convolution. |
|
padding : int, or tuple/list of 2 int, or tuple/list of 4 int |
|
Padding value for convolution layer. |
|
dilation : int or tuple/list of 2 int, default 1 |
|
Dilation value for convolution layer. |
|
groups : int, default 1 |
|
Number of groups. |
|
bias : bool, default False |
|
Whether the layer uses a bias vector. |
|
use_bn : bool, default True |
|
Whether to use BatchNorm layer. |
|
bn_eps : float, default 1e-5 |
|
Small float added to variance in Batch norm. |
|
activation : function or str or None, default nn.ReLU(inplace=True) |
|
Activation function or name of activation function. |
|
""" |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
use_bn=True, |
|
bn_eps=1e-5, |
|
activation=nn.ReLU(inplace=True)): |
|
super(ConvBlock, self).__init__() |
|
self.activate = (activation is not None) |
|
self.use_bn = use_bn |
|
self.use_pad = (isinstance(padding, (list, tuple)) and (len(padding) == 4)) |
|
|
|
if self.use_pad: |
|
self.pad = nn.ZeroPad2d(padding=padding) |
|
padding = 0 |
|
self.conv = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias) |
|
if self.use_bn: |
|
self.bn = nn.BatchNorm2d( |
|
num_features=out_channels, |
|
eps=bn_eps) |
|
if self.activate: |
|
self.activ = activation |
|
|
|
def forward(self, x): |
|
if self.use_pad: |
|
x = self.pad(x) |
|
x = self.conv(x) |
|
if self.use_bn: |
|
x = self.bn(x) |
|
if self.activate: |
|
x = self.activ(x) |
|
return x |
|
|
|
|
|
def conv1x1_block(in_channels, |
|
out_channels, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
bias=False, |
|
use_bn=True, |
|
bn_eps=1e-5, |
|
activation=nn.ReLU(inplace=True)): |
|
""" |
|
1x1 version of the standard convolution block. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
stride : int or tuple/list of 2 int, default 1 |
|
Strides of the convolution. |
|
padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 0 |
|
Padding value for convolution layer. |
|
groups : int, default 1 |
|
Number of groups. |
|
bias : bool, default False |
|
Whether the layer uses a bias vector. |
|
use_bn : bool, default True |
|
Whether to use BatchNorm layer. |
|
bn_eps : float, default 1e-5 |
|
Small float added to variance in Batch norm. |
|
activation : function or str or None, default nn.ReLU(inplace=True) |
|
Activation function or name of activation function. |
|
""" |
|
return ConvBlock( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=stride, |
|
padding=padding, |
|
groups=groups, |
|
bias=bias, |
|
use_bn=use_bn, |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
|
|
|
|
def conv3x3_block(in_channels, |
|
out_channels, |
|
stride=1, |
|
padding=1, |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
use_bn=True, |
|
bn_eps=1e-5, |
|
activation=nn.ReLU(inplace=True)): |
|
""" |
|
3x3 version of the standard convolution block. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
stride : int or tuple/list of 2 int, default 1 |
|
Strides of the convolution. |
|
padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 |
|
Padding value for convolution layer. |
|
dilation : int or tuple/list of 2 int, default 1 |
|
Dilation value for convolution layer. |
|
groups : int, default 1 |
|
Number of groups. |
|
bias : bool, default False |
|
Whether the layer uses a bias vector. |
|
use_bn : bool, default True |
|
Whether to use BatchNorm layer. |
|
bn_eps : float, default 1e-5 |
|
Small float added to variance in Batch norm. |
|
activation : function or str or None, default nn.ReLU(inplace=True) |
|
Activation function or name of activation function. |
|
""" |
|
return ConvBlock( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
use_bn=use_bn, |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
|
|
|
|
def dwconv3x3_block(in_channels, |
|
out_channels, |
|
stride=1, |
|
padding=1, |
|
dilation=1, |
|
bias=False, |
|
bn_eps=1e-5, |
|
activation=nn.ReLU(inplace=True)): |
|
""" |
|
3x3 depthwise version of the standard convolution block. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
stride : int or tuple/list of 2 int, default 1 |
|
Strides of the convolution. |
|
padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 |
|
Padding value for convolution layer. |
|
dilation : int or tuple/list of 2 int, default 1 |
|
Dilation value for convolution layer. |
|
bias : bool, default False |
|
Whether the layer uses a bias vector. |
|
bn_eps : float, default 1e-5 |
|
Small float added to variance in Batch norm. |
|
activation : function or str or None, default nn.ReLU(inplace=True) |
|
Activation function or name of activation function. |
|
""" |
|
return ConvBlock( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=out_channels, |
|
bias=bias, |
|
use_bn=True, |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
|
|
|
|
def dwconv5x5_block(in_channels, |
|
out_channels, |
|
stride=1, |
|
padding=2, |
|
dilation=1, |
|
bias=False, |
|
bn_eps=1e-5, |
|
activation=nn.ReLU(inplace=True)): |
|
""" |
|
5x5 depthwise version of the standard convolution block. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
stride : int or tuple/list of 2 int, default 1 |
|
Strides of the convolution. |
|
padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 2 |
|
Padding value for convolution layer. |
|
dilation : int or tuple/list of 2 int, default 1 |
|
Dilation value for convolution layer. |
|
bias : bool, default False |
|
Whether the layer uses a bias vector. |
|
bn_eps : float, default 1e-5 |
|
Small float added to variance in Batch norm. |
|
activation : function or str or None, default nn.ReLU(inplace=True) |
|
Activation function or name of activation function. |
|
""" |
|
return ConvBlock( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=5, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=out_channels, |
|
bias=bias, |
|
use_bn=True, |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
|
|
|
|
class EffiDwsConvUnit(nn.Module): |
|
""" |
|
EfficientNet specific depthwise separable convolution block/unit with BatchNorms and activations at each convolution |
|
layers. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
stride : int or tuple/list of 2 int |
|
Strides of the second convolution layer. |
|
bn_eps : float |
|
Small float added to variance in Batch norm. |
|
activation : str |
|
Name of activation function. |
|
tf_mode : bool |
|
Whether to use TF-like mode. |
|
""" |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
bn_eps, |
|
activation, |
|
tf_mode): |
|
super(EffiDwsConvUnit, self).__init__() |
|
self.tf_mode = tf_mode |
|
self.residual = (in_channels == out_channels) and (stride == 1) |
|
|
|
self.dw_conv = dwconv3x3_block( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
padding=(0 if tf_mode else 1), |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
self.se = SEBlock( |
|
channels=in_channels, |
|
reduction=4, |
|
mid_activation=activation) |
|
self.pw_conv = conv1x1_block( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
bn_eps=bn_eps, |
|
activation=None) |
|
|
|
def forward(self, x): |
|
if self.residual: |
|
identity = x |
|
if self.tf_mode: |
|
x = F.pad(x, pad=calc_tf_padding(x, kernel_size=3)) |
|
x = self.dw_conv(x) |
|
x = self.se(x) |
|
x = self.pw_conv(x) |
|
if self.residual: |
|
x = x + identity |
|
return x |
|
|
|
|
|
class EffiInvResUnit(nn.Module): |
|
""" |
|
EfficientNet inverted residual unit. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
kernel_size : int or tuple/list of 2 int |
|
Convolution window size. |
|
stride : int or tuple/list of 2 int |
|
Strides of the second convolution layer. |
|
exp_factor : int |
|
Factor for expansion of channels. |
|
se_factor : int |
|
SE reduction factor for each unit. |
|
bn_eps : float |
|
Small float added to variance in Batch norm. |
|
activation : str |
|
Name of activation function. |
|
tf_mode : bool |
|
Whether to use TF-like mode. |
|
""" |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
exp_factor, |
|
se_factor, |
|
bn_eps, |
|
activation, |
|
tf_mode): |
|
super(EffiInvResUnit, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.tf_mode = tf_mode |
|
self.residual = (in_channels == out_channels) and (stride == 1) |
|
self.use_se = se_factor > 0 |
|
mid_channels = in_channels * exp_factor |
|
dwconv_block_fn = dwconv3x3_block if kernel_size == 3 else (dwconv5x5_block if kernel_size == 5 else None) |
|
|
|
self.conv1 = conv1x1_block( |
|
in_channels=in_channels, |
|
out_channels=mid_channels, |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
self.conv2 = dwconv_block_fn( |
|
in_channels=mid_channels, |
|
out_channels=mid_channels, |
|
stride=stride, |
|
padding=(0 if tf_mode else (kernel_size // 2)), |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
if self.use_se: |
|
self.se = SEBlock( |
|
channels=mid_channels, |
|
reduction=(exp_factor * se_factor), |
|
mid_activation=activation) |
|
self.conv3 = conv1x1_block( |
|
in_channels=mid_channels, |
|
out_channels=out_channels, |
|
bn_eps=bn_eps, |
|
activation=None) |
|
|
|
def forward(self, x): |
|
if self.residual: |
|
identity = x |
|
x = self.conv1(x) |
|
if self.tf_mode: |
|
x = F.pad(x, pad=calc_tf_padding(x, kernel_size=self.kernel_size, stride=self.stride)) |
|
x = self.conv2(x) |
|
if self.use_se: |
|
x = self.se(x) |
|
x = self.conv3(x) |
|
if self.residual: |
|
x = x + identity |
|
return x |
|
|
|
|
|
class EffiInitBlock(nn.Module): |
|
""" |
|
EfficientNet specific initial block. |
|
|
|
Parameters: |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
Number of output channels. |
|
bn_eps : float |
|
Small float added to variance in Batch norm. |
|
activation : str |
|
Name of activation function. |
|
tf_mode : bool |
|
Whether to use TF-like mode. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
bn_eps, |
|
activation, |
|
tf_mode): |
|
super(EffiInitBlock, self).__init__() |
|
self.tf_mode = tf_mode |
|
|
|
self.conv = conv3x3_block( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=2, |
|
padding=(0 if tf_mode else 1), |
|
bn_eps=bn_eps, |
|
activation=activation) |
|
|
|
def forward(self, x): |
|
if self.tf_mode: |
|
x = F.pad(x, pad=calc_tf_padding(x, kernel_size=3, stride=2)) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class EfficientNet(nn.Module): |
|
""" |
|
EfficientNet model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' |
|
https://arxiv.org/abs/1905.11946. |
|
|
|
Parameters: |
|
---------- |
|
channels : list of list of int |
|
Number of output channels for each unit. |
|
init_block_channels : int |
|
Number of output channels for initial unit. |
|
final_block_channels : int |
|
Number of output channels for the final block of the feature extractor. |
|
kernel_sizes : list of list of int |
|
Number of kernel sizes for each unit. |
|
strides_per_stage : list int |
|
Stride value for the first unit of each stage. |
|
expansion_factors : list of list of int |
|
Number of expansion factors for each unit. |
|
dropout_rate : float, default 0.2 |
|
Fraction of the input units to drop. Must be a number between 0 and 1. |
|
tf_mode : bool, default False |
|
Whether to use TF-like mode. |
|
bn_eps : float, default 1e-5 |
|
Small float added to variance in Batch norm. |
|
in_channels : int, default 3 |
|
Number of input channels. |
|
in_size : tuple of two ints, default (224, 224) |
|
Spatial size of the expected input image. |
|
num_classes : int, default 1000 |
|
Number of classification classes. |
|
""" |
|
def __init__(self, |
|
cfg, |
|
channels, |
|
init_block_channels, |
|
kernel_sizes, |
|
strides_per_stage, |
|
expansion_factors, |
|
tf_mode=False, |
|
bn_eps=1e-5, |
|
in_channels=3): |
|
super(EfficientNet, self).__init__() |
|
activation = swish() |
|
|
|
self.out_channels = [] |
|
self.features = nn.Sequential() |
|
self.stages = [] |
|
stem = EffiInitBlock( |
|
in_channels=in_channels, |
|
out_channels=init_block_channels, |
|
bn_eps=bn_eps, |
|
activation=activation, |
|
tf_mode=tf_mode) |
|
self.features.add_module("init_block", stem) |
|
self.stages.append(stem) |
|
|
|
in_channels = init_block_channels |
|
for i, channels_per_stage in enumerate(channels): |
|
kernel_sizes_per_stage = kernel_sizes[i] |
|
expansion_factors_per_stage = expansion_factors[i] |
|
stage = nn.Sequential() |
|
for j, out_channels in enumerate(channels_per_stage): |
|
kernel_size = kernel_sizes_per_stage[j] |
|
expansion_factor = expansion_factors_per_stage[j] |
|
stride = strides_per_stage[i] if (j == 0) else 1 |
|
if i == 0: |
|
stage.add_module("unit{}".format(j + 1), EffiDwsConvUnit( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=stride, |
|
bn_eps=bn_eps, |
|
activation=activation, |
|
tf_mode=tf_mode)) |
|
else: |
|
stage.add_module("unit{}".format(j + 1), EffiInvResUnit( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
exp_factor=expansion_factor, |
|
se_factor=4, |
|
bn_eps=bn_eps, |
|
activation=activation, |
|
tf_mode=tf_mode)) |
|
in_channels = out_channels |
|
if i>0: |
|
self.out_channels.append(out_channels) |
|
self.features.add_module("stage{}".format(i + 1), stage) |
|
self.stages.append(stage) |
|
|
|
self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT) |
|
|
|
def _freeze_backbone(self, freeze_at): |
|
if freeze_at < 0: |
|
return |
|
for stage_index in range(freeze_at): |
|
m = self.stages[stage_index] |
|
for p in m.parameters(): |
|
p.requires_grad = False |
|
|
|
def forward(self, x): |
|
res = [] |
|
for i, stage in enumerate(self.stages): |
|
x = stage(x) |
|
if i>1: |
|
res.append(x) |
|
return res |
|
|
|
|
|
def get_efficientnet(cfg, version, tf_mode = True, bn_eps=1e-5, **kwargs): |
|
if version == "b0": |
|
depth_factor = 1.0 |
|
width_factor = 1.0 |
|
elif version == "b1": |
|
depth_factor = 1.1 |
|
width_factor = 1.0 |
|
elif version == "b2": |
|
depth_factor = 1.2 |
|
width_factor = 1.1 |
|
elif version == "b3": |
|
depth_factor = 1.4 |
|
width_factor = 1.2 |
|
elif version == "b4": |
|
depth_factor = 1.8 |
|
width_factor = 1.4 |
|
elif version == "b5": |
|
depth_factor = 2.2 |
|
width_factor = 1.6 |
|
elif version == "b6": |
|
depth_factor = 2.6 |
|
width_factor = 1.8 |
|
elif version == "b7": |
|
depth_factor = 3.1 |
|
width_factor = 2.0 |
|
elif version == "b8": |
|
depth_factor = 3.6 |
|
width_factor = 2.2 |
|
else: |
|
raise ValueError("Unsupported EfficientNet version {}".format(version)) |
|
|
|
init_block_channels = 32 |
|
layers = [1, 2, 2, 3, 3, 4, 1] |
|
downsample = [1, 1, 1, 1, 0, 1, 0] |
|
channels_per_layers = [16, 24, 40, 80, 112, 192, 320] |
|
expansion_factors_per_layers = [1, 6, 6, 6, 6, 6, 6] |
|
kernel_sizes_per_layers = [3, 3, 5, 3, 5, 5, 3] |
|
strides_per_stage = [1, 2, 2, 2, 1, 2, 1] |
|
|
|
layers = [int(math.ceil(li * depth_factor)) for li in layers] |
|
channels_per_layers = [round_channels(ci * width_factor) for ci in channels_per_layers] |
|
|
|
from functools import reduce |
|
channels = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], |
|
zip(channels_per_layers, layers, downsample), []) |
|
kernel_sizes = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], |
|
zip(kernel_sizes_per_layers, layers, downsample), []) |
|
expansion_factors = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], |
|
zip(expansion_factors_per_layers, layers, downsample), []) |
|
strides_per_stage = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], |
|
zip(strides_per_stage, layers, downsample), []) |
|
strides_per_stage = [si[0] for si in strides_per_stage] |
|
|
|
init_block_channels = round_channels(init_block_channels * width_factor) |
|
|
|
net = EfficientNet( |
|
cfg, |
|
channels=channels, |
|
init_block_channels=init_block_channels, |
|
kernel_sizes=kernel_sizes, |
|
strides_per_stage=strides_per_stage, |
|
expansion_factors=expansion_factors, |
|
tf_mode=tf_mode, |
|
bn_eps=bn_eps, |
|
**kwargs) |
|
|
|
return net |
|
|