|
""" |
|
FBNet model builder |
|
""" |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import copy |
|
import logging |
|
import math |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BatchNorm2d, SyncBatchNorm |
|
from maskrcnn_benchmark.layers import Conv2d, interpolate |
|
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d |
|
from maskrcnn_benchmark.layers.misc import _NewEmptyTensorOp |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _py2_round(x): |
|
return math.floor(x + 0.5) if x >= 0.0 else math.ceil(x - 0.5) |
|
|
|
|
|
def _get_divisible_by(num, divisible_by, min_val): |
|
ret = int(num) |
|
if divisible_by > 0 and num % divisible_by != 0: |
|
ret = int((_py2_round(num / divisible_by) or min_val) * divisible_by) |
|
return ret |
|
|
|
|
|
class Identity(nn.Module): |
|
def __init__(self, C_in, C_out, stride): |
|
super(Identity, self).__init__() |
|
self.conv = ( |
|
ConvBNRelu( |
|
C_in, |
|
C_out, |
|
kernel=1, |
|
stride=stride, |
|
pad=0, |
|
no_bias=1, |
|
use_relu="relu", |
|
bn_type="bn", |
|
) |
|
if C_in != C_out or stride != 1 |
|
else None |
|
) |
|
|
|
def forward(self, x): |
|
if self.conv: |
|
out = self.conv(x) |
|
else: |
|
out = x |
|
return out |
|
|
|
|
|
class CascadeConv3x3(nn.Sequential): |
|
def __init__(self, C_in, C_out, stride): |
|
assert stride in [1, 2] |
|
ops = [ |
|
Conv2d(C_in, C_in, 3, stride, 1, bias=False), |
|
BatchNorm2d(C_in), |
|
nn.ReLU(inplace=True), |
|
Conv2d(C_in, C_out, 3, 1, 1, bias=False), |
|
BatchNorm2d(C_out), |
|
] |
|
super(CascadeConv3x3, self).__init__(*ops) |
|
self.res_connect = (stride == 1) and (C_in == C_out) |
|
|
|
def forward(self, x): |
|
y = super(CascadeConv3x3, self).forward(x) |
|
if self.res_connect: |
|
y += x |
|
return y |
|
|
|
|
|
class Shift(nn.Module): |
|
def __init__(self, C, kernel_size, stride, padding): |
|
super(Shift, self).__init__() |
|
self.C = C |
|
kernel = torch.zeros((C, 1, kernel_size, kernel_size), dtype=torch.float32) |
|
ch_idx = 0 |
|
|
|
assert stride in [1, 2] |
|
self.stride = stride |
|
self.padding = padding |
|
self.kernel_size = kernel_size |
|
self.dilation = 1 |
|
|
|
hks = kernel_size // 2 |
|
ksq = kernel_size ** 2 |
|
|
|
for i in range(kernel_size): |
|
for j in range(kernel_size): |
|
if i == hks and j == hks: |
|
num_ch = C // ksq + C % ksq |
|
else: |
|
num_ch = C // ksq |
|
kernel[ch_idx : ch_idx + num_ch, 0, i, j] = 1 |
|
ch_idx += num_ch |
|
|
|
self.register_parameter("bias", None) |
|
self.kernel = nn.Parameter(kernel, requires_grad=False) |
|
|
|
def forward(self, x): |
|
if x.numel() > 0: |
|
return nn.functional.conv2d( |
|
x, |
|
self.kernel, |
|
self.bias, |
|
(self.stride, self.stride), |
|
(self.padding, self.padding), |
|
self.dilation, |
|
self.C, |
|
) |
|
|
|
output_shape = [ |
|
(i + 2 * p - (di * (k - 1) + 1)) // d + 1 |
|
for i, p, di, k, d in zip( |
|
x.shape[-2:], |
|
(self.padding, self.dilation), |
|
(self.dilation, self.dilation), |
|
(self.kernel_size, self.kernel_size), |
|
(self.stride, self.stride), |
|
) |
|
] |
|
output_shape = [x.shape[0], self.C] + output_shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|
|
|
|
class ShiftBlock5x5(nn.Sequential): |
|
def __init__(self, C_in, C_out, expansion, stride): |
|
assert stride in [1, 2] |
|
self.res_connect = (stride == 1) and (C_in == C_out) |
|
|
|
C_mid = _get_divisible_by(C_in * expansion, 8, 8) |
|
|
|
ops = [ |
|
|
|
Conv2d(C_in, C_mid, 1, 1, 0, bias=False), |
|
BatchNorm2d(C_mid), |
|
nn.ReLU(inplace=True), |
|
|
|
Shift(C_mid, 5, stride, 2), |
|
|
|
Conv2d(C_mid, C_out, 1, 1, 0, bias=False), |
|
BatchNorm2d(C_out), |
|
] |
|
super(ShiftBlock5x5, self).__init__(*ops) |
|
|
|
def forward(self, x): |
|
y = super(ShiftBlock5x5, self).forward(x) |
|
if self.res_connect: |
|
y += x |
|
return y |
|
|
|
|
|
class ChannelShuffle(nn.Module): |
|
def __init__(self, groups): |
|
super(ChannelShuffle, self).__init__() |
|
self.groups = groups |
|
|
|
def forward(self, x): |
|
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]""" |
|
N, C, H, W = x.size() |
|
g = self.groups |
|
assert C % g == 0, "Incompatible group size {} for input channel {}".format( |
|
g, C |
|
) |
|
return ( |
|
x.view(N, g, int(C / g), H, W) |
|
.permute(0, 2, 1, 3, 4) |
|
.contiguous() |
|
.view(N, C, H, W) |
|
) |
|
|
|
|
|
class ConvBNRelu(nn.Sequential): |
|
def __init__( |
|
self, |
|
input_depth, |
|
output_depth, |
|
kernel, |
|
stride, |
|
pad, |
|
no_bias, |
|
use_relu, |
|
bn_type, |
|
group=1, |
|
*args, |
|
**kwargs |
|
): |
|
super(ConvBNRelu, self).__init__() |
|
|
|
assert use_relu in ["relu", None] |
|
if isinstance(bn_type, (list, tuple)): |
|
assert len(bn_type) == 2 |
|
assert bn_type[0] == "gn" |
|
gn_group = bn_type[1] |
|
bn_type = bn_type[0] |
|
assert bn_type in ["bn", "nsbn", "sbn", "af", "gn", None] |
|
assert stride in [1, 2, 4] |
|
|
|
op = Conv2d( |
|
input_depth, |
|
output_depth, |
|
kernel_size=kernel, |
|
stride=stride, |
|
padding=pad, |
|
bias=not no_bias, |
|
groups=group, |
|
*args, |
|
**kwargs |
|
) |
|
nn.init.kaiming_normal_(op.weight, mode="fan_out", nonlinearity="relu") |
|
if op.bias is not None: |
|
nn.init.constant_(op.bias, 0.0) |
|
self.add_module("conv", op) |
|
|
|
if bn_type == "bn": |
|
bn_op = BatchNorm2d(output_depth) |
|
elif bn_type == "sbn": |
|
bn_op = SyncBatchNorm(output_depth) |
|
elif bn_type == "nsbn": |
|
bn_op = NaiveSyncBatchNorm2d(output_depth) |
|
elif bn_type == "gn": |
|
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=output_depth) |
|
elif bn_type == "af": |
|
bn_op = FrozenBatchNorm2d(output_depth) |
|
if bn_type is not None: |
|
self.add_module("bn", bn_op) |
|
|
|
if use_relu == "relu": |
|
self.add_module("relu", nn.ReLU(inplace=True)) |
|
|
|
|
|
class SEModule(nn.Module): |
|
reduction = 4 |
|
|
|
def __init__(self, C): |
|
super(SEModule, self).__init__() |
|
mid = max(C // self.reduction, 8) |
|
conv1 = Conv2d(C, mid, 1, 1, 0) |
|
conv2 = Conv2d(mid, C, 1, 1, 0) |
|
|
|
self.op = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), conv1, nn.ReLU(inplace=True), conv2, nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
return x * self.op(x) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, scale_factor, mode, align_corners=None): |
|
super(Upsample, self).__init__() |
|
self.scale = scale_factor |
|
self.mode = mode |
|
self.align_corners = align_corners |
|
|
|
def forward(self, x): |
|
return interpolate( |
|
x, scale_factor=self.scale, mode=self.mode, |
|
align_corners=self.align_corners |
|
) |
|
|
|
|
|
def _get_upsample_op(stride): |
|
assert ( |
|
stride in [1, 2, 4] |
|
or stride in [-1, -2, -4] |
|
or (isinstance(stride, tuple) and all(x in [-1, -2, -4] for x in stride)) |
|
) |
|
|
|
scales = stride |
|
ret = None |
|
if isinstance(stride, tuple) or stride < 0: |
|
scales = [-x for x in stride] if isinstance(stride, tuple) else -stride |
|
stride = 1 |
|
ret = Upsample(scale_factor=scales, mode="nearest", align_corners=None) |
|
|
|
return ret, stride |
|
|
|
|
|
class IRFBlock(nn.Module): |
|
def __init__( |
|
self, |
|
input_depth, |
|
output_depth, |
|
expansion, |
|
stride, |
|
bn_type="bn", |
|
kernel=3, |
|
width_divisor=1, |
|
shuffle_type=None, |
|
pw_group=1, |
|
se=False, |
|
cdw=False, |
|
dw_skip_bn=False, |
|
dw_skip_relu=False, |
|
): |
|
super(IRFBlock, self).__init__() |
|
|
|
assert kernel in [1, 3, 5, 7], kernel |
|
|
|
self.use_res_connect = stride == 1 and input_depth == output_depth |
|
self.output_depth = output_depth |
|
|
|
mid_depth = int(input_depth * expansion) |
|
mid_depth = _get_divisible_by(mid_depth, width_divisor, width_divisor) |
|
|
|
|
|
self.pw = ConvBNRelu( |
|
input_depth, |
|
mid_depth, |
|
kernel=1, |
|
stride=1, |
|
pad=0, |
|
no_bias=1, |
|
use_relu="relu", |
|
bn_type=bn_type, |
|
group=pw_group, |
|
) |
|
|
|
|
|
self.upscale, stride = _get_upsample_op(stride) |
|
|
|
|
|
if kernel == 1: |
|
self.dw = nn.Sequential() |
|
elif cdw: |
|
dw1 = ConvBNRelu( |
|
mid_depth, |
|
mid_depth, |
|
kernel=kernel, |
|
stride=stride, |
|
pad=(kernel // 2), |
|
group=mid_depth, |
|
no_bias=1, |
|
use_relu="relu", |
|
bn_type=bn_type, |
|
) |
|
dw2 = ConvBNRelu( |
|
mid_depth, |
|
mid_depth, |
|
kernel=kernel, |
|
stride=1, |
|
pad=(kernel // 2), |
|
group=mid_depth, |
|
no_bias=1, |
|
use_relu="relu" if not dw_skip_relu else None, |
|
bn_type=bn_type if not dw_skip_bn else None, |
|
) |
|
self.dw = nn.Sequential(OrderedDict([("dw1", dw1), ("dw2", dw2)])) |
|
else: |
|
self.dw = ConvBNRelu( |
|
mid_depth, |
|
mid_depth, |
|
kernel=kernel, |
|
stride=stride, |
|
pad=(kernel // 2), |
|
group=mid_depth, |
|
no_bias=1, |
|
use_relu="relu" if not dw_skip_relu else None, |
|
bn_type=bn_type if not dw_skip_bn else None, |
|
) |
|
|
|
|
|
self.pwl = ConvBNRelu( |
|
mid_depth, |
|
output_depth, |
|
kernel=1, |
|
stride=1, |
|
pad=0, |
|
no_bias=1, |
|
use_relu=None, |
|
bn_type=bn_type, |
|
group=pw_group, |
|
) |
|
|
|
self.shuffle_type = shuffle_type |
|
if shuffle_type is not None: |
|
self.shuffle = ChannelShuffle(pw_group) |
|
|
|
self.se4 = SEModule(output_depth) if se else nn.Sequential() |
|
|
|
self.output_depth = output_depth |
|
|
|
def forward(self, x): |
|
y = self.pw(x) |
|
if self.shuffle_type == "mid": |
|
y = self.shuffle(y) |
|
if self.upscale is not None: |
|
y = self.upscale(y) |
|
y = self.dw(y) |
|
y = self.pwl(y) |
|
if self.use_res_connect: |
|
y += x |
|
y = self.se4(y) |
|
return y |
|
|
|
|
|
|
|
skip = lambda C_in, C_out, stride, **kwargs: Identity( |
|
C_in, C_out, stride |
|
) |
|
basic_block = lambda C_in, C_out, stride, **kwargs: CascadeConv3x3( |
|
C_in, C_out, stride |
|
) |
|
|
|
ir_k3_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=3, **kwargs |
|
) |
|
ir_k3_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=3, **kwargs |
|
) |
|
ir_k3_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=3, **kwargs |
|
) |
|
ir_k3_s4 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 4, stride, kernel=3, shuffle_type="mid", pw_group=4, **kwargs |
|
) |
|
ir_k5_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=5, **kwargs |
|
) |
|
ir_k5_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=5, **kwargs |
|
) |
|
ir_k5_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=5, **kwargs |
|
) |
|
ir_k5_s4 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 4, stride, kernel=5, shuffle_type="mid", pw_group=4, **kwargs |
|
) |
|
|
|
ir_k3_e1_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=3, se=True, **kwargs |
|
) |
|
ir_k3_e3_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=3, se=True, **kwargs |
|
) |
|
ir_k3_e6_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=3, se=True, **kwargs |
|
) |
|
ir_k3_s4_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, |
|
C_out, |
|
4, |
|
stride, |
|
kernel=3, |
|
shuffle_type=mid, |
|
pw_group=4, |
|
se=True, |
|
**kwargs |
|
) |
|
ir_k5_e1_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=5, se=True, **kwargs |
|
) |
|
ir_k5_e3_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=5, se=True, **kwargs |
|
) |
|
ir_k5_e6_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=5, se=True, **kwargs |
|
) |
|
ir_k5_s4_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, |
|
C_out, |
|
4, |
|
stride, |
|
kernel=5, |
|
shuffle_type="mid", |
|
pw_group=4, |
|
se=True, |
|
**kwargs |
|
) |
|
|
|
ir_k3_s2 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=3, shuffle_type="mid", pw_group=2, **kwargs |
|
) |
|
ir_k5_s2 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=5, shuffle_type="mid", pw_group=2, **kwargs |
|
) |
|
ir_k3_s2_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, |
|
C_out, |
|
1, |
|
stride, |
|
kernel=3, |
|
shuffle_type="mid", |
|
pw_group=2, |
|
se=True, |
|
**kwargs |
|
) |
|
ir_k5_s2_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, |
|
C_out, |
|
1, |
|
stride, |
|
kernel=5, |
|
shuffle_type="mid", |
|
pw_group=2, |
|
se=True, |
|
**kwargs |
|
) |
|
|
|
ir_k33_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=3, cdw=True, **kwargs |
|
) |
|
ir_k33_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=3, cdw=True, **kwargs |
|
) |
|
ir_k33_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=3, cdw=True, **kwargs |
|
) |
|
|
|
ir_k7_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=7, **kwargs |
|
) |
|
ir_k7_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=7, **kwargs |
|
) |
|
ir_k7_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=7, **kwargs |
|
) |
|
ir_k7_sep_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 1, stride, kernel=7, cdw=True, **kwargs |
|
) |
|
ir_k7_sep_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 3, stride, kernel=7, cdw=True, **kwargs |
|
) |
|
ir_k7_sep_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( |
|
C_in, C_out, 6, stride, kernel=7, cdw=True, **kwargs |
|
) |