|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
class FPN(nn.Module): |
|
""" |
|
Module that adds FPN on top of a list of feature maps. |
|
The feature maps are currently supposed to be in increasing depth |
|
order, and must be consecutive |
|
""" |
|
|
|
def __init__( |
|
self, in_channels_list, out_channels, conv_block, top_blocks=None, drop_block=None, use_spp=False, use_pan=False, |
|
return_swint_feature_before_fusion=False |
|
): |
|
""" |
|
Arguments: |
|
in_channels_list (list[int]): number of channels for each feature map that |
|
will be fed |
|
out_channels (int): number of channels of the FPN representation |
|
top_blocks (nn.Module or None): if provided, an extra operation will |
|
be performed on the output of the last (smallest resolution) |
|
FPN output, and the result will extend the result list |
|
""" |
|
super(FPN, self).__init__() |
|
self.inner_blocks = [] |
|
self.layer_blocks = [] |
|
self.pan_blocks = [] if use_pan else None |
|
self.spp_block = SPPLayer() if use_spp else None |
|
self.return_swint_feature_before_fusion = return_swint_feature_before_fusion |
|
for idx, in_channels in enumerate(in_channels_list, 1): |
|
inner_block = "fpn_inner{}".format(idx) |
|
layer_block = "fpn_layer{}".format(idx) |
|
|
|
if in_channels == 0: |
|
continue |
|
if idx==len(in_channels_list) and use_spp: |
|
in_channels = in_channels*4 |
|
inner_block_module = conv_block(in_channels, out_channels, 1) |
|
layer_block_module = conv_block(out_channels, out_channels, 3, 1) |
|
self.add_module(inner_block, inner_block_module) |
|
self.add_module(layer_block, layer_block_module) |
|
self.inner_blocks.append(inner_block) |
|
self.layer_blocks.append(layer_block) |
|
|
|
if use_pan: |
|
pan_in_block = "pan_in_layer{}".format(idx) |
|
pan_in_block_module = conv_block(out_channels, out_channels, 3, 2) |
|
self.add_module(pan_in_block, pan_in_block_module) |
|
pan_out_block = "pan_out_layer{}".format(idx) |
|
pan_out_block_module = conv_block(out_channels, out_channels, 3, 1) |
|
self.add_module(pan_out_block, pan_out_block_module) |
|
self.pan_blocks.append([pan_in_block, pan_out_block]) |
|
|
|
self.top_blocks = top_blocks |
|
self.drop_block = drop_block |
|
|
|
def forward(self, x): |
|
""" |
|
Arguments: |
|
x (list[Tensor]): feature maps for each feature level. |
|
Returns: |
|
results (tuple[Tensor]): feature maps after FPN layers. |
|
They are ordered from highest resolution first. |
|
""" |
|
if type(x) is tuple: |
|
|
|
x, x_text = x[0], x[1] |
|
|
|
swint_feature_c4 = None |
|
if self.return_swint_feature_before_fusion: |
|
|
|
swint_feature_c4 = x[-2] |
|
|
|
if self.spp_block: |
|
last_inner = getattr(self, self.inner_blocks[-1])(self.spp_block(x[-1])) |
|
else: |
|
last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) |
|
results = [] |
|
results.append(getattr(self, self.layer_blocks[-1])(last_inner)) |
|
for feature, inner_block, layer_block in zip( |
|
x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1] |
|
): |
|
if not inner_block: |
|
continue |
|
inner_lateral = getattr(self, inner_block)(feature) |
|
|
|
if inner_lateral.shape[-2:] != last_inner.shape[-2:]: |
|
|
|
inner_top_down = F.interpolate(last_inner, size=inner_lateral.shape[-2:], mode="nearest") |
|
else: |
|
inner_top_down = last_inner |
|
|
|
|
|
|
|
|
|
last_inner = inner_lateral + inner_top_down |
|
if self.drop_block and self.training: |
|
results.insert(0, getattr(self, layer_block)(self.drop_block(last_inner))) |
|
else: |
|
results.insert(0, getattr(self, layer_block)(last_inner)) |
|
|
|
if self.pan_blocks: |
|
pan_results = [] |
|
last_outer = results[0] |
|
pan_results.append(last_outer) |
|
for outer_top_down, pan_block in zip(results[1:], self.pan_blocks): |
|
|
|
if self.drop_block and self.training: |
|
pan_lateral = getattr(self, pan_block[0])(self.drop_block(last_outer)) |
|
else: |
|
pan_lateral = getattr(self, pan_block[0])(last_outer) |
|
|
|
last_outer = getattr(self, pan_block[1])(pan_lateral + outer_top_down) |
|
pan_results.append(last_outer) |
|
results = pan_results |
|
|
|
if isinstance(self.top_blocks, LastLevelP6P7): |
|
last_results = self.top_blocks(x[-1], results[-1]) |
|
results.extend(last_results) |
|
elif isinstance(self.top_blocks, LastLevelMaxPool): |
|
last_results = self.top_blocks(results[-1]) |
|
results.extend(last_results) |
|
|
|
try: |
|
return tuple(results), x_text, swint_feature_c4 |
|
except NameError as e: |
|
return tuple(results) |
|
|
|
|
|
class LastLevelMaxPool(nn.Module): |
|
def forward(self, x): |
|
return [F.max_pool2d(x, 1, 2, 0)] |
|
|
|
|
|
class LastLevelP6P7(nn.Module): |
|
""" |
|
This module is used in RetinaNet to generate extra layers, P6 and P7. |
|
""" |
|
def __init__(self, in_channels, out_channels): |
|
super(LastLevelP6P7, self).__init__() |
|
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) |
|
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) |
|
for module in [self.p6, self.p7]: |
|
nn.init.kaiming_uniform_(module.weight, a=1) |
|
nn.init.constant_(module.bias, 0) |
|
self.use_P5 = in_channels == out_channels |
|
|
|
def forward(self, c5, p5): |
|
x = p5 if self.use_P5 else c5 |
|
p6 = self.p6(x) |
|
p7 = self.p7(F.relu(p6)) |
|
return [p6, p7] |
|
|
|
|
|
class SPPLayer(nn.Module): |
|
def __init__(self): |
|
super(SPPLayer, self).__init__() |
|
|
|
def forward(self, x): |
|
x_1 = x |
|
x_2 = F.max_pool2d(x, 5, stride=1, padding=2) |
|
x_3 = F.max_pool2d(x, 9, stride=1, padding=4) |
|
x_4 = F.max_pool2d(x, 13, stride=1, padding=6) |
|
out = torch.cat((x_1, x_2, x_3, x_4),dim=1) |
|
return out |