|
import torch |
|
from torch import nn |
|
|
|
class MixedOperationRandom(nn.Module): |
|
def __init__(self, search_ops): |
|
super(MixedOperationRandom, self).__init__() |
|
self.ops = nn.ModuleList(search_ops) |
|
self.num_ops = len(search_ops) |
|
|
|
def forward(self, x, x_path=None): |
|
if x_path is None: |
|
output = sum(op(x) for op in self.ops) / self.num_ops |
|
else: |
|
assert isinstance(x_path, (int, float)) and 0 <= x_path < self.num_ops or isinstance(x_path, torch.Tensor) |
|
if isinstance(x_path, (int, float)): |
|
x_path = int(x_path) |
|
assert 0 <= x_path < self.num_ops |
|
output = self.ops[x_path](x) |
|
elif isinstance(x_path, torch.Tensor): |
|
assert x_path.size(0) == x.size(0), 'batch_size should match length of y_idx' |
|
output = torch.cat([self.ops[int(x_path[i].item())](x.narrow(0, i, 1)) |
|
for i in range(x.size(0))], dim=0) |
|
return output |