|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def conv7x7(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""7x7 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=7, stride=stride, |
|
padding=3*dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""5x5 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride, |
|
padding=2*dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
def maxpool(**kwargs): |
|
return nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
|
|
def avgpool(**kwargs): |
|
return nn.AvgPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
def dropout(prob): |
|
return nn.Dropout(prob) |
|
|
|
|
|
conv3x3sep = lambda i, o, s=1: conv3x3(i, o, s, groups=i) |
|
conv3x3g2 = lambda i, o, s=1: conv3x3(i, o, s, groups=2) |
|
conv3x3g4 = lambda i, o, s=1: conv3x3(i, o, s, groups=4) |
|
conv3x3g8 = lambda i, o, s=1: conv3x3(i, o, s, groups=8) |
|
conv3x3dw = lambda i, o, s=1: conv3x3(i, o, s, groups=i) |
|
|
|
conv3x3d2 = lambda i, o, s=1: conv3x3(i, o, s, dilation=2) |
|
conv3x3d3 = lambda i, o, s=1: conv3x3(i, o, s, dilation=3) |
|
conv3x3d4 = lambda i, o, s=1: conv3x3(i, o, s, dilation=4) |
|
|
|
|
|
conv5x5sep = lambda i, o, s=1: conv5x5(i, o, s, groups=i) |
|
conv5x5g2 = lambda i, o, s=1: conv5x5(i, o, s, groups=2) |
|
conv5x5g4 = lambda i, o, s=1: conv5x5(i, o, s, groups=4) |
|
conv5x5g8 = lambda i, o, s=1: conv5x5(i, o, s, groups=8) |
|
conv5x5dw = lambda i, o, s=1: conv5x5(i, o, s, groups=i) |
|
|
|
|
|
conv5x5d2 = lambda i, o, s=1: conv5x5(i, o, s, dilation=2) |
|
conv5x5d3 = lambda i, o, s=1: conv5x5(i, o, s, dilation=3) |
|
conv5x5d4 = lambda i, o, s=1: conv5x5(i, o, s, dilation=4) |
|
|
|
conv7x7sep = lambda i, o, s=1: conv7x7(i, o, s, groups=i) |
|
conv7x7g2 = lambda i, o, s=1: conv7x7(i, o, s, groups=2) |
|
conv7x7g4 = lambda i, o, s=1: conv7x7(i, o, s, groups=4) |
|
conv7x7g8 = lambda i, o, s=1: conv7x7(i, o, s, groups=8) |
|
conv7x7dw = lambda i, o, s=1: conv7x7(i, o, s, groups=i) |
|
|
|
conv7x7d2 = lambda i, o, s=1: conv7x7(i, o, s, dilation=2) |
|
conv7x7d3 = lambda i, o, s=1: conv7x7(i, o, s, dilation=3) |
|
conv7x7d4 = lambda i, o, s=1: conv7x7(i, o, s, dilation=4) |