|
|
|
""" |
|
Variant of the resnet module that takes cfg as an argument. |
|
Example usage. Strings may be specified in the config file. |
|
model = ResNet( |
|
"StemWithFixedBatchNorm", |
|
"BottleneckWithFixedBatchNorm", |
|
"ResNet50StagesTo4", |
|
) |
|
OR: |
|
model = ResNet( |
|
"StemWithGN", |
|
"BottleneckWithGN", |
|
"ResNet50StagesTo4", |
|
) |
|
Custom implementations may be written in user code and hooked in via the |
|
`register_*` functions. |
|
""" |
|
from collections import namedtuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import BatchNorm2d, SyncBatchNorm |
|
|
|
from maskrcnn_benchmark.layers import FrozenBatchNorm2d, NaiveSyncBatchNorm2d |
|
from maskrcnn_benchmark.layers import Conv2d, DFConv2d, SELayer |
|
from maskrcnn_benchmark.modeling.make_layers import group_norm |
|
from maskrcnn_benchmark.utils.registry import Registry |
|
|
|
|
|
|
|
StageSpec = namedtuple( |
|
"StageSpec", |
|
[ |
|
"index", |
|
"block_count", |
|
"return_features", |
|
], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
ResNet50StagesTo5 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, False), (4, 3, True)) |
|
) |
|
|
|
ResNet50StagesTo4 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, True)) |
|
) |
|
|
|
ResNet101StagesTo5 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, False), (4, 3, True)) |
|
) |
|
|
|
ResNet101StagesTo4 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, True)) |
|
) |
|
|
|
ResNet50FPNStagesTo5 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 6, True), (4, 3, True)) |
|
) |
|
|
|
ResNet101FPNStagesTo5 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 23, True), (4, 3, True)) |
|
) |
|
|
|
ResNet152FPNStagesTo5 = tuple( |
|
StageSpec(index=i, block_count=c, return_features=r) |
|
for (i, c, r) in ((1, 3, True), (2, 8, True), (3, 36, True), (4, 3, True)) |
|
) |
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, cfg): |
|
super(ResNet, self).__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
norm_level = None |
|
stem_module = _STEM_MODULES[cfg.MODEL.RESNETS.STEM_FUNC] |
|
stage_specs = _STAGE_SPECS[cfg.MODEL.BACKBONE.CONV_BODY] |
|
transformation_module = _TRANSFORMATION_MODULES[cfg.MODEL.RESNETS.TRANS_FUNC] |
|
|
|
if cfg.MODEL.BACKBONE.USE_BN: |
|
stem_module = StemWithBatchNorm |
|
transformation_module = BottleneckWithBatchNorm |
|
norm_level = cfg.MODEL.BACKBONE.NORM_LEVEL |
|
elif cfg.MODEL.BACKBONE.USE_NSYNCBN: |
|
stem_module = StemWithNaiveSyncBatchNorm |
|
transformation_module = BottleneckWithNaiveSyncBatchNorm |
|
norm_level = cfg.MODEL.BACKBONE.NORM_LEVEL |
|
elif cfg.MODEL.BACKBONE.USE_SYNCBN: |
|
stem_module = StemWithSyncBatchNorm |
|
transformation_module = BottleneckWithSyncBatchNorm |
|
norm_level = cfg.MODEL.BACKBONE.NORM_LEVEL |
|
|
|
|
|
self.stem = stem_module(cfg) |
|
|
|
|
|
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS |
|
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP |
|
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS |
|
stage2_bottleneck_channels = num_groups * width_per_group |
|
stage2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS |
|
with_se = cfg.MODEL.RESNETS.WITH_SE |
|
|
|
self.stages = [] |
|
self.out_channels = [] |
|
self.return_features = {} |
|
for stage_spec in stage_specs: |
|
name = "layer" + str(stage_spec.index) |
|
stage2_relative_factor = 2 ** (stage_spec.index - 1) |
|
bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor |
|
out_channels = stage2_out_channels * stage2_relative_factor |
|
stage_with_dcn = cfg.MODEL.RESNETS.STAGE_WITH_DCN[stage_spec.index - 1] |
|
if cfg.MODEL.RESNETS.USE_AVG_DOWN: |
|
avg_down_stride = 1 if stage_spec.index==1 else 2 |
|
else: |
|
avg_down_stride = 0 |
|
module = _make_stage( |
|
transformation_module, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
stage_spec.block_count, |
|
num_groups, |
|
cfg.MODEL.RESNETS.STRIDE_IN_1X1, |
|
first_stride=int(stage_spec.index > 1) + 1, |
|
dcn_config={ |
|
"stage_with_dcn": stage_with_dcn, |
|
"with_modulated_dcn": cfg.MODEL.RESNETS.WITH_MODULATED_DCN, |
|
"deformable_groups": cfg.MODEL.RESNETS.DEFORMABLE_GROUPS, |
|
}, |
|
norm_level=norm_level, |
|
with_se=with_se, |
|
avg_down_stride=avg_down_stride |
|
) |
|
in_channels = out_channels |
|
self.add_module(name, module) |
|
self.stages.append(name) |
|
self.out_channels.append(out_channels) |
|
self.return_features[name] = stage_spec.return_features |
|
|
|
|
|
self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT) |
|
|
|
def _freeze_backbone(self, freeze_at): |
|
if freeze_at < 0: |
|
return |
|
for stage_index in range(freeze_at): |
|
if stage_index == 0: |
|
m = self.stem |
|
else: |
|
m = getattr(self, "layer" + str(stage_index)) |
|
for p in m.parameters(): |
|
p.requires_grad = False |
|
|
|
def forward(self, x): |
|
outputs = [] |
|
x = self.stem(x) |
|
for stage_name in self.stages: |
|
x = getattr(self, stage_name)(x) |
|
if self.return_features[stage_name]: |
|
outputs.append(x) |
|
return outputs |
|
|
|
|
|
class ResNetHead(nn.Module): |
|
def __init__( |
|
self, |
|
block_module, |
|
stages, |
|
num_groups=1, |
|
width_per_group=64, |
|
stride_in_1x1=True, |
|
stride_init=None, |
|
res2_out_channels=256, |
|
dilation=1, |
|
dcn_config=None |
|
): |
|
super(ResNetHead, self).__init__() |
|
|
|
stage2_relative_factor = 2 ** (stages[0].index - 1) |
|
stage2_bottleneck_channels = num_groups * width_per_group |
|
out_channels = res2_out_channels * stage2_relative_factor |
|
in_channels = out_channels // 2 |
|
bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor |
|
|
|
block_module = _TRANSFORMATION_MODULES[block_module] |
|
|
|
self.stages = [] |
|
stride = stride_init |
|
for stage in stages: |
|
name = "layer" + str(stage.index) |
|
if not stride: |
|
stride = int(stage.index > 1) + 1 |
|
module = _make_stage( |
|
block_module, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
stage.block_count, |
|
num_groups, |
|
stride_in_1x1, |
|
first_stride=stride, |
|
dilation=dilation, |
|
dcn_config=dcn_config |
|
) |
|
stride = None |
|
self.add_module(name, module) |
|
self.stages.append(name) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x): |
|
for stage in self.stages: |
|
x = getattr(self, stage)(x) |
|
return x |
|
|
|
|
|
def _make_stage( |
|
transformation_module, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
block_count, |
|
num_groups, |
|
stride_in_1x1, |
|
first_stride, |
|
dilation=1, |
|
dcn_config=None, |
|
norm_level=None, |
|
**kwargs |
|
): |
|
blocks = [] |
|
stride = first_stride |
|
for li in range(block_count): |
|
if norm_level is not None: |
|
layer_module = BottleneckWithFixedBatchNorm |
|
if norm_level >= 1 and li == 0: |
|
layer_module = transformation_module |
|
if norm_level >= 2 and li == block_count - 1: |
|
layer_module = transformation_module |
|
if norm_level >= 3: |
|
layer_module = transformation_module |
|
else: |
|
layer_module = transformation_module |
|
|
|
blocks.append( |
|
layer_module( |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups, |
|
stride_in_1x1, |
|
stride, |
|
dilation=dilation, |
|
dcn_config=dcn_config, |
|
**kwargs |
|
) |
|
) |
|
stride = 1 |
|
in_channels = out_channels |
|
return nn.Sequential(*blocks) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups, |
|
stride_in_1x1, |
|
stride, |
|
dilation, |
|
norm_func, |
|
dcn_config, |
|
with_se=False, |
|
avg_down_stride=0, |
|
): |
|
super(Bottleneck, self).__init__() |
|
|
|
self.downsample = None |
|
if in_channels != out_channels: |
|
down_stride = stride if dilation == 1 else 1 |
|
if avg_down_stride>0: |
|
self.downsample = nn.Sequential( |
|
nn.AvgPool2d( |
|
kernel_size=avg_down_stride, |
|
stride=avg_down_stride, |
|
ceil_mode=True, |
|
count_include_pad=False |
|
), |
|
nn.Conv2d( |
|
in_channels, out_channels, |
|
kernel_size=1, stride=1, bias=False |
|
), |
|
norm_func(out_channels), |
|
) |
|
else: |
|
self.downsample = nn.Sequential( |
|
Conv2d( |
|
in_channels, out_channels, |
|
kernel_size=1, stride=down_stride, bias=False |
|
), |
|
norm_func(out_channels), |
|
) |
|
for modules in [self.downsample,]: |
|
for l in modules.modules(): |
|
if isinstance(l, Conv2d): |
|
nn.init.kaiming_uniform_(l.weight, a=1) |
|
|
|
if dilation > 1: |
|
stride = 1 |
|
|
|
|
|
|
|
|
|
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) |
|
|
|
self.conv1 = Conv2d( |
|
in_channels, |
|
bottleneck_channels, |
|
kernel_size=1, |
|
stride=stride_1x1, |
|
bias=False, |
|
) |
|
self.bn1 = norm_func(bottleneck_channels) |
|
|
|
with_dcn = dcn_config.get("stage_with_dcn", False) |
|
if with_dcn: |
|
deformable_groups = dcn_config.get("deformable_groups", 1) |
|
with_modulated_dcn = dcn_config.get("with_modulated_dcn", False) |
|
self.conv2 = DFConv2d( |
|
bottleneck_channels, |
|
bottleneck_channels, |
|
with_modulated_dcn=with_modulated_dcn, |
|
kernel_size=3, |
|
stride=stride_3x3, |
|
groups=num_groups, |
|
dilation=dilation, |
|
deformable_groups=deformable_groups, |
|
bias=False |
|
) |
|
else: |
|
self.conv2 = Conv2d( |
|
bottleneck_channels, |
|
bottleneck_channels, |
|
kernel_size=3, |
|
stride=stride_3x3, |
|
padding=dilation, |
|
bias=False, |
|
groups=num_groups, |
|
dilation=dilation |
|
) |
|
nn.init.kaiming_uniform_(self.conv2.weight, a=1) |
|
|
|
self.bn2 = norm_func(bottleneck_channels) |
|
|
|
self.conv3 = Conv2d( |
|
bottleneck_channels, out_channels, kernel_size=1, bias=False |
|
) |
|
self.bn3 = norm_func(out_channels) |
|
|
|
self.se = SELayer(out_channels) if with_se and not with_dcn else None |
|
|
|
for l in [self.conv1, self.conv3,]: |
|
nn.init.kaiming_uniform_(l.weight, a=1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = F.relu_(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = F.relu_(out) |
|
|
|
out0 = self.conv3(out) |
|
out = self.bn3(out0) |
|
|
|
if self.se: |
|
out = self.se(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = F.relu_(out) |
|
|
|
return out |
|
|
|
|
|
class BaseStem(nn.Module): |
|
def __init__(self, cfg, norm_func): |
|
super(BaseStem, self).__init__() |
|
|
|
out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS |
|
self.stem_3x3 = cfg.MODEL.RESNETS.USE_STEM3X3 |
|
|
|
if self.stem_3x3: |
|
self.conv1 = Conv2d( |
|
3, out_channels, kernel_size=3, stride=2, padding=1, bias=False |
|
) |
|
self.bn1 = norm_func(out_channels) |
|
self.conv2 = Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False |
|
) |
|
self.bn2 = norm_func(out_channels) |
|
for l in [self.conv1, self.conv2]: |
|
nn.init.kaiming_uniform_(l.weight, a=1) |
|
else: |
|
self.conv1 = Conv2d( |
|
3, out_channels, kernel_size=7, stride=2, padding=3, bias=False |
|
) |
|
self.bn1 = norm_func(out_channels) |
|
|
|
for l in [self.conv1,]: |
|
nn.init.kaiming_uniform_(l.weight, a=1) |
|
|
|
def forward(self, x): |
|
if self.stem_3x3: |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = F.relu_(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = F.relu_(x) |
|
else: |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = F.relu_(x) |
|
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) |
|
return x |
|
|
|
|
|
class BottleneckWithFixedBatchNorm(Bottleneck): |
|
def __init__( |
|
self, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups=1, |
|
stride_in_1x1=True, |
|
stride=1, |
|
dilation=1, |
|
dcn_config=None, |
|
**kwargs |
|
): |
|
super(BottleneckWithFixedBatchNorm, self).__init__( |
|
in_channels=in_channels, |
|
bottleneck_channels=bottleneck_channels, |
|
out_channels=out_channels, |
|
num_groups=num_groups, |
|
stride_in_1x1=stride_in_1x1, |
|
stride=stride, |
|
dilation=dilation, |
|
norm_func=FrozenBatchNorm2d, |
|
dcn_config=dcn_config, |
|
**kwargs |
|
) |
|
|
|
|
|
class StemWithFixedBatchNorm(BaseStem): |
|
def __init__(self, cfg): |
|
super(StemWithFixedBatchNorm, self).__init__( |
|
cfg, norm_func=FrozenBatchNorm2d |
|
) |
|
|
|
|
|
class BottleneckWithBatchNorm(Bottleneck): |
|
def __init__( |
|
self, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups=1, |
|
stride_in_1x1=True, |
|
stride=1, |
|
dilation=1, |
|
dcn_config=None, |
|
**kwargs |
|
): |
|
super(BottleneckWithBatchNorm, self).__init__( |
|
in_channels=in_channels, |
|
bottleneck_channels=bottleneck_channels, |
|
out_channels=out_channels, |
|
num_groups=num_groups, |
|
stride_in_1x1=stride_in_1x1, |
|
stride=stride, |
|
dilation=dilation, |
|
norm_func=BatchNorm2d, |
|
dcn_config=dcn_config, |
|
**kwargs |
|
) |
|
|
|
|
|
class StemWithBatchNorm(BaseStem): |
|
def __init__(self, cfg): |
|
super(StemWithBatchNorm, self).__init__( |
|
cfg, norm_func=BatchNorm2d |
|
) |
|
|
|
|
|
class BottleneckWithNaiveSyncBatchNorm(Bottleneck): |
|
def __init__( |
|
self, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups=1, |
|
stride_in_1x1=True, |
|
stride=1, |
|
dilation=1, |
|
dcn_config=None, |
|
**kwargs |
|
): |
|
super(BottleneckWithNaiveSyncBatchNorm, self).__init__( |
|
in_channels=in_channels, |
|
bottleneck_channels=bottleneck_channels, |
|
out_channels=out_channels, |
|
num_groups=num_groups, |
|
stride_in_1x1=stride_in_1x1, |
|
stride=stride, |
|
dilation=dilation, |
|
norm_func=NaiveSyncBatchNorm2d, |
|
dcn_config=dcn_config, |
|
**kwargs |
|
) |
|
|
|
|
|
class StemWithNaiveSyncBatchNorm(BaseStem): |
|
def __init__(self, cfg): |
|
super(StemWithNaiveSyncBatchNorm, self).__init__( |
|
cfg, norm_func=NaiveSyncBatchNorm2d |
|
) |
|
|
|
|
|
class BottleneckWithSyncBatchNorm(Bottleneck): |
|
def __init__( |
|
self, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups=1, |
|
stride_in_1x1=True, |
|
stride=1, |
|
dilation=1, |
|
dcn_config=None, |
|
**kwargs |
|
): |
|
super(BottleneckWithSyncBatchNorm, self).__init__( |
|
in_channels=in_channels, |
|
bottleneck_channels=bottleneck_channels, |
|
out_channels=out_channels, |
|
num_groups=num_groups, |
|
stride_in_1x1=stride_in_1x1, |
|
stride=stride, |
|
dilation=dilation, |
|
norm_func=SyncBatchNorm, |
|
dcn_config=dcn_config, |
|
**kwargs |
|
) |
|
|
|
|
|
class StemWithSyncBatchNorm(BaseStem): |
|
def __init__(self, cfg): |
|
super(StemWithSyncBatchNorm, self).__init__( |
|
cfg, norm_func=SyncBatchNorm |
|
) |
|
|
|
|
|
class BottleneckWithGN(Bottleneck): |
|
def __init__( |
|
self, |
|
in_channels, |
|
bottleneck_channels, |
|
out_channels, |
|
num_groups=1, |
|
stride_in_1x1=True, |
|
stride=1, |
|
dilation=1, |
|
dcn_config=None, |
|
**kwargs |
|
): |
|
super(BottleneckWithGN, self).__init__( |
|
in_channels=in_channels, |
|
bottleneck_channels=bottleneck_channels, |
|
out_channels=out_channels, |
|
num_groups=num_groups, |
|
stride_in_1x1=stride_in_1x1, |
|
stride=stride, |
|
dilation=dilation, |
|
norm_func=group_norm, |
|
dcn_config=dcn_config, |
|
**kwargs |
|
) |
|
|
|
|
|
class StemWithGN(BaseStem): |
|
def __init__(self, cfg): |
|
super(StemWithGN, self).__init__(cfg, norm_func=group_norm) |
|
|
|
|
|
_TRANSFORMATION_MODULES = Registry({ |
|
"BottleneckWithFixedBatchNorm": BottleneckWithFixedBatchNorm, |
|
"BottleneckWithGN": BottleneckWithGN, |
|
}) |
|
|
|
_STEM_MODULES = Registry({ |
|
"StemWithFixedBatchNorm": StemWithFixedBatchNorm, |
|
"StemWithGN": StemWithGN, |
|
}) |
|
|
|
_STAGE_SPECS = Registry({ |
|
"R-50-C4": ResNet50StagesTo4, |
|
"R-50-C5": ResNet50StagesTo5, |
|
"R-50-RETINANET": ResNet50StagesTo5, |
|
"R-101-C4": ResNet101StagesTo4, |
|
"R-101-C5": ResNet101StagesTo5, |
|
"R-101-RETINANET": ResNet101StagesTo5, |
|
"R-50-FPN": ResNet50FPNStagesTo5, |
|
"R-50-FPN-RETINANET": ResNet50FPNStagesTo5, |
|
"R-50-FPN-FCOS": ResNet50FPNStagesTo5, |
|
"R-101-FPN": ResNet101FPNStagesTo5, |
|
"R-101-FPN-RETINANET": ResNet101FPNStagesTo5, |
|
"R-101-FPN-FCOS": ResNet101FPNStagesTo5, |
|
"R-152-FPN": ResNet152FPNStagesTo5, |
|
}) |