|
|
|
import math |
|
|
|
import torch |
|
|
|
|
|
class BoxCoder(object): |
|
""" |
|
This class encodes and decodes a set of bounding boxes into |
|
the representation used for training the regressors. |
|
""" |
|
|
|
def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)): |
|
""" |
|
Arguments: |
|
weights (4-element tuple) |
|
bbox_xform_clip (float) |
|
""" |
|
self.weights = weights |
|
self.bbox_xform_clip = bbox_xform_clip |
|
|
|
def encode(self, reference_boxes, proposals): |
|
""" |
|
Encode a set of proposals with respect to some |
|
reference boxes |
|
|
|
Arguments: |
|
reference_boxes (Tensor): reference boxes |
|
proposals (Tensor): boxes to be encoded |
|
""" |
|
|
|
TO_REMOVE = 1 |
|
ex_widths = proposals[:, 2] - proposals[:, 0] + TO_REMOVE |
|
ex_heights = proposals[:, 3] - proposals[:, 1] + TO_REMOVE |
|
ex_ctr_x = proposals[:, 0] + 0.5 * ex_widths |
|
ex_ctr_y = proposals[:, 1] + 0.5 * ex_heights |
|
|
|
gt_widths = reference_boxes[:, 2] - reference_boxes[:, 0] + TO_REMOVE |
|
gt_heights = reference_boxes[:, 3] - reference_boxes[:, 1] + TO_REMOVE |
|
gt_ctr_x = reference_boxes[:, 0] + 0.5 * gt_widths |
|
gt_ctr_y = reference_boxes[:, 1] + 0.5 * gt_heights |
|
|
|
wx, wy, ww, wh = self.weights |
|
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths |
|
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights |
|
targets_dw = ww * torch.log(gt_widths / ex_widths) |
|
targets_dh = wh * torch.log(gt_heights / ex_heights) |
|
|
|
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) |
|
return targets |
|
|
|
def decode(self, rel_codes, boxes): |
|
""" |
|
From a set of original boxes and encoded relative box offsets, |
|
get the decoded boxes. |
|
|
|
Arguments: |
|
rel_codes (Tensor): encoded boxes |
|
boxes (Tensor): reference boxes. |
|
""" |
|
|
|
boxes = boxes.to(rel_codes.dtype) |
|
|
|
TO_REMOVE = 1 |
|
widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE |
|
heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE |
|
ctr_x = boxes[:, 0] + 0.5 * widths |
|
ctr_y = boxes[:, 1] + 0.5 * heights |
|
|
|
wx, wy, ww, wh = self.weights |
|
dx = rel_codes[:, 0::4] / wx |
|
dy = rel_codes[:, 1::4] / wy |
|
dw = rel_codes[:, 2::4] / ww |
|
dh = rel_codes[:, 3::4] / wh |
|
|
|
|
|
dw = torch.clamp(dw, max=self.bbox_xform_clip) |
|
dh = torch.clamp(dh, max=self.bbox_xform_clip) |
|
|
|
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] |
|
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] |
|
pred_w = torch.exp(dw) * widths[:, None] |
|
pred_h = torch.exp(dh) * heights[:, None] |
|
|
|
pred_boxes = torch.zeros_like(rel_codes) |
|
|
|
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w |
|
|
|
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h |
|
|
|
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 |
|
|
|
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 |
|
|
|
return pred_boxes |
|
|