|
|
|
""" |
|
Implements the Generalized R-CNN framework |
|
""" |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.structures.image_list import to_image_list |
|
|
|
from ..backbone import build_backbone |
|
from ..rpn import build_rpn |
|
from ..roi_heads import build_roi_heads |
|
|
|
import timeit |
|
|
|
class GeneralizedRCNN(nn.Module): |
|
""" |
|
Main class for Generalized R-CNN. Currently supports boxes and masks. |
|
It consists of three main parts: |
|
- backbone |
|
- rpn |
|
- heads: takes the features + the proposals from the RPN and computes |
|
detections / masks from it. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super(GeneralizedRCNN, self).__init__() |
|
|
|
self.backbone = build_backbone(cfg) |
|
self.rpn = build_rpn(cfg) |
|
self.roi_heads = build_roi_heads(cfg) |
|
self.DEBUG = cfg.MODEL.DEBUG |
|
self.ONNX = cfg.MODEL.ONNX |
|
self.freeze_backbone = cfg.MODEL.BACKBONE.FREEZE |
|
self.freeze_fpn = cfg.MODEL.FPN.FREEZE |
|
self.freeze_rpn = cfg.MODEL.RPN.FREEZE |
|
|
|
if cfg.MODEL.LINEAR_PROB: |
|
assert cfg.MODEL.BACKBONE.FREEZE, "For linear probing, backbone should be frozen!" |
|
if hasattr(self.backbone, 'fpn'): |
|
assert cfg.MODEL.FPN.FREEZE, "For linear probing, FPN should be frozen!" |
|
self.linear_prob = cfg.MODEL.LINEAR_PROB |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(GeneralizedRCNN, self).train(mode) |
|
if self.freeze_backbone: |
|
self.backbone.body.eval() |
|
for p in self.backbone.body.parameters(): |
|
p.requires_grad = False |
|
if self.freeze_fpn: |
|
self.backbone.fpn.eval() |
|
for p in self.backbone.fpn.parameters(): |
|
p.requires_grad = False |
|
if self.freeze_rpn: |
|
self.rpn.eval() |
|
for p in self.rpn.parameters(): |
|
p.requires_grad = False |
|
if self.linear_prob: |
|
if self.rpn is not None: |
|
for key, value in self.rpn.named_parameters(): |
|
if not ('bbox_pred' in key or 'cls_logits' in key or 'centerness' in key or 'cosine_scale' in key): |
|
value.requires_grad = False |
|
if self.roi_heads is not None: |
|
for key, value in self.roi_heads.named_parameters(): |
|
if not ('bbox_pred' in key or 'cls_logits' in key or 'centerness' in key or 'cosine_scale' in key): |
|
value.requires_grad = False |
|
|
|
def forward(self, images, targets=None): |
|
""" |
|
Arguments: |
|
images (list[Tensor] or ImageList): images to be processed |
|
targets (list[BoxList]): ground-truth boxes present in the image (optional) |
|
|
|
Returns: |
|
result (list[BoxList] or dict[Tensor]): the output from the model. |
|
During training, it returns a dict[Tensor] which contains the losses. |
|
During testing, it returns list[BoxList] contains additional fields |
|
like `scores`, `labels` and `mask` (for Mask R-CNN models). |
|
|
|
""" |
|
if self.training and targets is None: |
|
raise ValueError("In training mode, targets should be passed") |
|
|
|
if self.DEBUG: debug_info = {} |
|
if self.DEBUG: debug_info['input_size'] = images[0].size() |
|
if self.DEBUG: tic = timeit.time.perf_counter() |
|
|
|
if self.ONNX: |
|
features = self.backbone(images) |
|
else: |
|
images = to_image_list(images) |
|
features = self.backbone(images.tensors) |
|
|
|
if self.DEBUG: debug_info['feat_time'] = timeit.time.perf_counter() - tic |
|
if self.DEBUG: debug_info['feat_size'] = [feat.size() for feat in features] |
|
if self.DEBUG: tic = timeit.time.perf_counter() |
|
|
|
proposals, proposal_losses = self.rpn(images, features, targets) |
|
|
|
if self.DEBUG: debug_info['rpn_time'] = timeit.time.perf_counter() - tic |
|
if self.DEBUG: debug_info['#rpn'] = [prop for prop in proposals] |
|
if self.DEBUG: tic = timeit.time.perf_counter() |
|
|
|
if self.roi_heads: |
|
x, result, detector_losses = self.roi_heads(features, proposals, targets) |
|
else: |
|
|
|
x = features |
|
result = proposals |
|
detector_losses = {} |
|
|
|
if self.DEBUG: debug_info['rcnn_time'] = timeit.time.perf_counter() - tic |
|
if self.DEBUG: debug_info['#rcnn'] = result |
|
if self.DEBUG: return result, debug_info |
|
|
|
if self.training: |
|
losses = {} |
|
losses.update(detector_losses) |
|
losses.update(proposal_losses) |
|
return losses |
|
|
|
return result |