|
|
|
""" |
|
Implements the Generalized VL R-CNN framework |
|
""" |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from maskrcnn_benchmark.structures.image_list import to_image_list |
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist |
|
|
|
from ..backbone import build_backbone |
|
from ..rpn import build_rpn |
|
from ..roi_heads import build_roi_heads |
|
|
|
from ..language_backbone import build_language_backbone |
|
from transformers import AutoTokenizer |
|
|
|
import random |
|
import timeit |
|
import pdb |
|
from copy import deepcopy |
|
|
|
def random_word(input_ids, mask_token_id, vocabs, padding_token_id, greenlight_map): |
|
""" |
|
greenlight_map, batch_size x 256 (seq_len): |
|
0 means this location cannot be calculated in the MLM loss |
|
-1 means this location cannot be masked!! |
|
1 means this location can be masked and can be calculated in the MLM loss |
|
""" |
|
output_label = deepcopy(input_ids) |
|
for j in range(input_ids.size(0)): |
|
for i in range(input_ids.size(1)): |
|
prob = random.random() |
|
|
|
ratio = 0.15 |
|
if greenlight_map is not None and greenlight_map[j,i] == -1: |
|
output_label[j,i] = -100 |
|
continue |
|
|
|
if (not input_ids[j,i] == padding_token_id) and prob < ratio: |
|
prob /= ratio |
|
|
|
|
|
if prob < 0.8: |
|
input_ids[j,i] = mask_token_id |
|
|
|
|
|
elif prob < 0.9: |
|
input_ids[j,i] = random.choice(vocabs) |
|
|
|
else: |
|
|
|
output_label[j,i] = -100 |
|
|
|
if greenlight_map is not None and greenlight_map[j,i] != 1: |
|
output_label[j,i] = -100 |
|
return input_ids, output_label |
|
|
|
|
|
class GeneralizedVLRCNN(nn.Module): |
|
""" |
|
Main class for Generalized R-CNN. Currently supports boxes and masks. |
|
It consists of three main parts: |
|
- backbone |
|
- rpn |
|
- heads: takes the features + the proposals from the RPN and computes |
|
detections / masks from it. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super(GeneralizedVLRCNN, self).__init__() |
|
self.cfg = cfg |
|
|
|
|
|
self.backbone = build_backbone(cfg) |
|
|
|
|
|
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip": |
|
|
|
from transformers import CLIPTokenizerFast |
|
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: |
|
print("Reuse token 'ðŁĴij</w>' (token_id = 49404) for mask token!") |
|
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", |
|
from_slow=True, mask_token='ðŁĴij</w>') |
|
else: |
|
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", |
|
from_slow=True) |
|
else: |
|
self.tokenizer = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE) |
|
self.tokenizer_vocab = self.tokenizer.get_vocab() |
|
self.tokenizer_vocab_ids = [item for key, item in self.tokenizer_vocab.items()] |
|
|
|
self.language_backbone = build_language_backbone(cfg) |
|
|
|
self.rpn = build_rpn(cfg) |
|
self.roi_heads = build_roi_heads(cfg) |
|
self.DEBUG = cfg.MODEL.DEBUG |
|
|
|
self.freeze_backbone = cfg.MODEL.BACKBONE.FREEZE |
|
self.freeze_fpn = cfg.MODEL.FPN.FREEZE |
|
self.freeze_rpn = cfg.MODEL.RPN.FREEZE |
|
self.add_linear_layer = cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER |
|
|
|
self.force_boxes = cfg.MODEL.RPN.FORCE_BOXES |
|
|
|
if cfg.MODEL.LINEAR_PROB: |
|
assert cfg.MODEL.BACKBONE.FREEZE, "For linear probing, backbone should be frozen!" |
|
if hasattr(self.backbone, 'fpn'): |
|
assert cfg.MODEL.FPN.FREEZE, "For linear probing, FPN should be frozen!" |
|
self.linear_prob = cfg.MODEL.LINEAR_PROB |
|
self.freeze_cls_logits = cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS |
|
if cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
|
|
if hasattr(self.rpn.head, 'cls_logits'): |
|
for p in self.rpn.head.cls_logits.parameters(): |
|
p.requires_grad = False |
|
|
|
self.freeze_language_backbone = self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE |
|
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE: |
|
for p in self.language_backbone.parameters(): |
|
p.requires_grad = False |
|
|
|
self.use_mlm_loss = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS |
|
self.mlm_loss_for_only_positives = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_FOR_ONLY_POSITIVES |
|
|
|
if self.cfg.GLIPKNOW.KNOWLEDGE_FILE: |
|
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file |
|
self.class_name_to_knowledge = load_from_yaml_file(self.cfg.GLIPKNOW.KNOWLEDGE_FILE) |
|
self.class_name_list = sorted([k for k in self.class_name_to_knowledge]) |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(GeneralizedVLRCNN, self).train(mode) |
|
if self.freeze_backbone: |
|
self.backbone.body.eval() |
|
for p in self.backbone.body.parameters(): |
|
p.requires_grad = False |
|
if self.freeze_fpn: |
|
self.backbone.fpn.eval() |
|
for p in self.backbone.fpn.parameters(): |
|
p.requires_grad = False |
|
if self.freeze_rpn: |
|
if hasattr(self.rpn, 'head'): |
|
self.rpn.head.eval() |
|
for p in self.rpn.parameters(): |
|
p.requires_grad = False |
|
if self.linear_prob: |
|
if self.rpn is not None: |
|
for key, value in self.rpn.named_parameters(): |
|
if not ('bbox_pred' in key or 'cls_logits' in key or 'centerness' in key or 'cosine_scale' in key or 'dot_product_projection_text' in key or 'head.log_scale' in key or 'head.bias_lang' in key or 'head.bias0' in key): |
|
value.requires_grad = False |
|
if self.roi_heads is not None: |
|
for key, value in self.roi_heads.named_parameters(): |
|
if not ('bbox_pred' in key or 'cls_logits' in key or 'centerness' in key or 'cosine_scale' in key or 'dot_product_projection_text' in key or 'head.log_scale' in key or 'head.bias_lang' in key or 'head.bias0' in key): |
|
value.requires_grad = False |
|
if self.freeze_cls_logits: |
|
if hasattr(self.rpn.head, 'cls_logits'): |
|
self.rpn.head.cls_logits.eval() |
|
for p in self.rpn.head.cls_logits.parameters(): |
|
p.requires_grad = False |
|
if self.add_linear_layer: |
|
if self.rpn is not None: |
|
for key, p in self.rpn.named_parameters(): |
|
if 'tunable_linear' in key: |
|
p.requires_grad = True |
|
|
|
if self.freeze_language_backbone: |
|
self.language_backbone.eval() |
|
for p in self.language_backbone.parameters(): |
|
p.requires_grad = False |
|
|
|
def forward(self, |
|
images, |
|
targets=None, |
|
captions=None, |
|
positive_map=None, |
|
greenlight_map=None): |
|
""" |
|
Arguments: |
|
images (list[Tensor] or ImageList): images to be processed |
|
targets (list[BoxList]): ground-truth boxes present in the image (optional) |
|
|
|
mask_black_list: batch x 256, indicates whether or not a certain token is maskable or not |
|
|
|
Returns: |
|
result (list[BoxList] or dict[Tensor]): the output from the model. |
|
During training, it returns a dict[Tensor] which contains the losses. |
|
During testing, it returns list[BoxList] contains additional fields |
|
like `scores`, `labels` and `mask` (for Mask R-CNN models). |
|
|
|
""" |
|
if self.training and targets is None: |
|
raise ValueError("In training mode, targets should be passed") |
|
|
|
images = to_image_list(images) |
|
|
|
device = images.tensors.device |
|
|
|
|
|
if self.cfg.GLIPKNOW.PARALLEL_LANGUAGE_INPUT: |
|
language_dict_features, positive_map = self._forward_language_parallel( |
|
captions=captions, targets=targets, device=device, |
|
positive_map=positive_map) |
|
else: |
|
|
|
language_dict_features = {} |
|
if captions is not None: |
|
|
|
tokenized = self.tokenizer.batch_encode_plus(captions, |
|
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, |
|
padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest", |
|
return_special_tokens_mask=True, |
|
return_tensors='pt', |
|
truncation=True).to(device) |
|
if self.use_mlm_loss: |
|
if not self.mlm_loss_for_only_positives: |
|
greenlight_map = None |
|
input_ids, mlm_labels = random_word( |
|
input_ids=tokenized.input_ids, |
|
mask_token_id=self.tokenizer.mask_token_id, |
|
vocabs=self.tokenizer_vocab_ids, |
|
padding_token_id=self.tokenizer.pad_token_id, |
|
greenlight_map=greenlight_map) |
|
else: |
|
input_ids = tokenized.input_ids |
|
mlm_labels = None |
|
|
|
|
|
tokenizer_input = {"input_ids": input_ids, |
|
"attention_mask": tokenized.attention_mask} |
|
|
|
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE: |
|
with torch.no_grad(): |
|
language_dict_features = self.language_backbone(tokenizer_input) |
|
else: |
|
language_dict_features = self.language_backbone(tokenizer_input) |
|
|
|
|
|
if self.cfg.DATASETS.ONE_HOT: |
|
new_masks = torch.zeros_like(language_dict_features['masks'], |
|
device=language_dict_features['masks'].device) |
|
new_masks[:, :self.cfg.MODEL.DYHEAD.NUM_CLASSES] = 1 |
|
language_dict_features['masks'] = new_masks |
|
|
|
|
|
if self.cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL: |
|
language_dict_features["masks"] = 1 - tokenized.special_tokens_mask |
|
|
|
language_dict_features["mlm_labels"] = mlm_labels |
|
|
|
|
|
swint_feature_c4 = None |
|
if 'vl' in self.cfg.MODEL.SWINT.VERSION: |
|
|
|
inputs = {"img": images.tensors, "lang": language_dict_features} |
|
visual_features, language_dict_features, swint_feature_c4 = self.backbone(inputs) |
|
else: |
|
visual_features = self.backbone(images.tensors) |
|
|
|
|
|
if targets: |
|
targets = [target.to(device) |
|
for target in targets if target is not None] |
|
|
|
if self.force_boxes: |
|
proposals = [] |
|
for t in targets: |
|
tb = t.copy_with_fields(["labels"]) |
|
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device)) |
|
proposals.append(tb) |
|
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES: |
|
_, proposal_losses, fused_visual_features = self.rpn( |
|
images, visual_features, targets, language_dict_features, |
|
positive_map, captions, swint_feature_c4) |
|
elif self.training: |
|
null_loss = 0 |
|
for key, param in self.rpn.named_parameters(): |
|
null_loss += 0.0 * param.sum() |
|
proposal_losses = {('rpn_null_loss', null_loss)} |
|
else: |
|
proposals, proposal_losses, fused_visual_features = self.rpn(images, visual_features, targets, language_dict_features, positive_map, |
|
captions, swint_feature_c4) |
|
if self.roi_heads: |
|
if self.cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL"): |
|
if self.training: |
|
|
|
assert len(targets) == 1 and len(targets[0]) == len(positive_map), "shape match assert for mask head!!" |
|
|
|
|
|
targets[0].add_field("positive_map", positive_map) |
|
|
|
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES: |
|
x, result, detector_losses = self.roi_heads( |
|
fused_visual_features, proposals, targets, |
|
language_dict_features=language_dict_features, |
|
positive_map_label_to_token=positive_map if not self.training else None |
|
) |
|
else: |
|
x, result, detector_losses = self.roi_heads( |
|
visual_features, proposals, targets, |
|
language_dict_features=language_dict_features, |
|
positive_map_label_to_token=positive_map if not self.training else None |
|
) |
|
else: |
|
|
|
x = visual_features |
|
result = proposals |
|
detector_losses = {} |
|
|
|
if self.training: |
|
losses = {} |
|
losses.update(detector_losses) |
|
losses.update(proposal_losses) |
|
return losses |
|
|
|
return result |
|
|
|
def _forward_language_parallel(self, captions=None, targets=None, |
|
device=None, positive_map=None): |
|
ktype = self.cfg.GLIPKNOW.KNOWLEDGE_TYPE |
|
def _construct_captions_from_class_names(class_names): |
|
captions = [] |
|
for c in class_names: |
|
try: |
|
info = self.class_name_to_knowledge[c] |
|
cap = info['clean_name'] |
|
|
|
|
|
if self.cfg.GLIPKNOW.WIKI_AND_GPT3: |
|
ktype = 'def_wiki' |
|
know_seq = info[ktype] |
|
|
|
ktype = 'gpt3' |
|
if ktype == 'gpt3' or type(info[ktype]) == list: |
|
know_seq += ' '.join([seq for seq in info[ktype][:self.cfg.GLIPKNOW.GPT3_NUM] ]) |
|
|
|
cap += ': ' + know_seq |
|
|
|
|
|
else: |
|
if ktype and ktype in info and info[ktype]: |
|
if ktype == 'gpt3' or type(info[ktype]) == list: |
|
know_seq = ' '.join([seq for seq in info[ktype][:self.cfg.GLIPKNOW.GPT3_NUM] ]) |
|
else: |
|
know_seq = info[ktype] |
|
cap += ': ' + know_seq |
|
except: |
|
cap = c |
|
print(f'cap {cap}, c {c}') |
|
|
|
|
|
captions.append(cap) |
|
return captions |
|
|
|
if self.training: |
|
assert captions is None |
|
assert targets is not None |
|
|
|
max_classes_per_batch = self.cfg.GLIPKNOW.MAX_NUM_CLASSES_PER_BATCH_TRAIN |
|
if max_classes_per_batch >= len(self.class_name_list): |
|
shuffled_class_names = self.class_name_list.copy() |
|
random.shuffle(shuffled_class_names) |
|
if max_classes_per_batch > len(shuffled_class_names): |
|
shuffled_class_names.extend(shuffled_class_names[:max_classes_per_batch |
|
-len(shuffled_class_names)]) |
|
random.shuffle(shuffled_class_names) |
|
else: |
|
label_list = [] |
|
label_to_idx = {} |
|
for target_per_im in targets: |
|
labels_per_im = target_per_im.get_field('label_names') |
|
for label in labels_per_im: |
|
if label not in label_to_idx: |
|
label_to_idx[label] = len(label_list) |
|
label_list.append(label) |
|
|
|
label_list = label_list[:max_classes_per_batch] |
|
if len(label_list) < max_classes_per_batch: |
|
all_neg_classes = [c for c in self.class_name_list if c not |
|
in label_to_idx] |
|
neg_label_list = random.sample(all_neg_classes, |
|
max_classes_per_batch - len(label_list)) |
|
label_list.extend(neg_label_list) |
|
random.shuffle(label_list) |
|
shuffled_class_names = label_list |
|
|
|
label_to_shuffled_idx = {l: i for i, l in |
|
enumerate(shuffled_class_names)} |
|
total_boxes = sum(len(t) for t in targets) |
|
positive_map = torch.zeros((total_boxes, max_classes_per_batch+1), |
|
device=device) |
|
offset = 0 |
|
for target_per_im in targets: |
|
labels_per_im = target_per_im.get_field('label_names') |
|
for label in labels_per_im: |
|
j = label_to_shuffled_idx.get(label, -1) |
|
if j >= 0: |
|
positive_map[offset, j] = 1 |
|
offset += 1 |
|
captions = _construct_captions_from_class_names(shuffled_class_names) |
|
captions.append('') |
|
batch_size = len(targets) |
|
|
|
else: |
|
assert captions is not None |
|
batch_size = 1 |
|
assert len(captions) == 1 |
|
class_names = captions[0] |
|
max_classes_per_batch = len(class_names) |
|
captions = _construct_captions_from_class_names(class_names) |
|
captions.append('') |
|
|
|
tokenized = self.tokenizer.batch_encode_plus(captions, |
|
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, |
|
padding="longest", |
|
return_special_tokens_mask=True, |
|
return_tensors='pt', |
|
truncation=True).to(device) |
|
assert not self.use_mlm_loss |
|
tokenizer_input = {"input_ids": tokenized.input_ids, |
|
"attention_mask": tokenized.attention_mask} |
|
|
|
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE: |
|
with torch.no_grad(): |
|
language_dict_features = self.language_backbone(tokenizer_input) |
|
else: |
|
language_dict_features = self.language_backbone(tokenizer_input) |
|
|
|
assert not self.cfg.DATASETS.ONE_HOT |
|
assert not self.cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL |
|
|
|
agg_type = self.cfg.GLIPKNOW.LAN_FEATURE_AGG_TYPE |
|
agg_feats = language_dict_features['hidden'] |
|
agg_emb = language_dict_features['embedded'] |
|
if agg_type == 'first': |
|
agg_feats = agg_feats[:, 0, :] |
|
agg_emb = agg_emb[:, 0, :] |
|
elif agg_type == 'mean': |
|
attn_mask = language_dict_features['masks'] |
|
seq_len = attn_mask.sum(-1).unsqueeze(-1).float() |
|
agg_feats = agg_feats * attn_mask.unsqueeze(-1).float() |
|
agg_feats = agg_feats.sum(1) / seq_len |
|
agg_emb = agg_emb * attn_mask.unsqueeze(-1).float() |
|
agg_emb = agg_emb.sum(1) / seq_len |
|
else: |
|
raise ValueError('not supported GLIPKNOW.LAN_FEATURE_AGG_TYPE: {}'.format(agg_type)) |
|
|
|
expanded_features = agg_feats.unsqueeze(0).repeat(batch_size, 1, 1) |
|
expanded_embedding = agg_emb.unsqueeze(0).repeat(batch_size, 1, 1) |
|
|
|
lang_dict = {} |
|
lang_dict["mlm_labels"] = None |
|
lang_dict["aggregate"] = None |
|
lang_dict["embedded"] = expanded_embedding |
|
lang_dict['hidden'] = expanded_features |
|
lang_dict["masks"] = torch.ones((batch_size, max_classes_per_batch+1), |
|
device=device, dtype=language_dict_features['masks'].dtype) |
|
|
|
|
|
|
|
lang_dict["masks"][:,-1] = 0 |
|
return lang_dict, positive_map |
|
|
|
|