|
from collections import OrderedDict |
|
import torch |
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.modeling import registry |
|
from . import bert_model |
|
from . import rnn_model |
|
from . import clip_model |
|
from . import word_utils |
|
|
|
|
|
@registry.LANGUAGE_BACKBONES.register("bert-base-uncased") |
|
def build_bert_backbone(cfg): |
|
body = bert_model.BertEncoder(cfg) |
|
model = nn.Sequential(OrderedDict([("body", body)])) |
|
return model |
|
|
|
|
|
@registry.LANGUAGE_BACKBONES.register("roberta-base") |
|
def build_bert_backbone(cfg): |
|
body = bert_model.BertEncoder(cfg) |
|
model = nn.Sequential(OrderedDict([("body", body)])) |
|
return model |
|
|
|
|
|
@registry.LANGUAGE_BACKBONES.register("rnn") |
|
def build_rnn_backbone(cfg): |
|
body = rnn_model.RNNEnoder(cfg) |
|
model = nn.Sequential(OrderedDict([("body", body)])) |
|
return model |
|
|
|
|
|
@registry.LANGUAGE_BACKBONES.register("clip") |
|
def build_clip_backbone(cfg): |
|
body = clip_model.CLIPTransformer(cfg) |
|
model = nn.Sequential(OrderedDict([("body", body)])) |
|
return model |
|
|
|
|
|
def build_backbone(cfg): |
|
assert cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE in registry.LANGUAGE_BACKBONES, \ |
|
"cfg.MODEL.LANGUAGE_BACKBONE.TYPE: {} is not registered in registry".format( |
|
cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE |
|
) |
|
return registry.LANGUAGE_BACKBONES[cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE](cfg) |
|
|