|
from copy import deepcopy |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
|
|
from transformers import BertConfig, RobertaConfig, RobertaModel, BertModel |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, cfg): |
|
super(BertEncoder, self).__init__() |
|
self.cfg = cfg |
|
self.bert_name = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE |
|
print("LANGUAGE BACKBONE USE GRADIENT CHECKPOINTING: ", self.cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT) |
|
|
|
if self.bert_name == "bert-base-uncased": |
|
config = BertConfig.from_pretrained(self.bert_name) |
|
config.gradient_checkpointing = self.cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT |
|
self.model = BertModel.from_pretrained(self.bert_name, add_pooling_layer=False, config=config) |
|
self.language_dim = 768 |
|
elif self.bert_name == "roberta-base": |
|
config = RobertaConfig.from_pretrained(self.bert_name) |
|
config.gradient_checkpointing = self.cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT |
|
self.model = RobertaModel.from_pretrained(self.bert_name, add_pooling_layer=False, config=config) |
|
self.language_dim = 768 |
|
else: |
|
raise NotImplementedError |
|
|
|
self.num_layers = cfg.MODEL.LANGUAGE_BACKBONE.N_LAYERS |
|
|
|
def forward(self, x): |
|
input = x["input_ids"] |
|
mask = x["attention_mask"] |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
|
|
outputs = self.model( |
|
input_ids=input, |
|
attention_mask=mask, |
|
output_hidden_states=True, |
|
) |
|
|
|
encoded_layers = outputs.hidden_states[1:] |
|
features = None |
|
features = torch.stack(encoded_layers[-self.num_layers:], 1).mean(1) |
|
|
|
|
|
features = features / self.num_layers |
|
|
|
embedded = features * mask.unsqueeze(-1).float() |
|
aggregate = embedded.sum(1) / (mask.sum(-1).unsqueeze(-1).float()) |
|
|
|
else: |
|
|
|
max_len = (input != 0).sum(1).max().item() |
|
outputs = self.model( |
|
input_ids=input[:, :max_len], |
|
attention_mask=mask[:, :max_len], |
|
output_hidden_states=True, |
|
) |
|
|
|
encoded_layers = outputs.hidden_states[1:] |
|
|
|
features = None |
|
features = torch.stack(encoded_layers[-self.num_layers:], 1).mean(1) |
|
|
|
features = features / self.num_layers |
|
|
|
embedded = features * mask[:, :max_len].unsqueeze(-1).float() |
|
aggregate = embedded.sum(1) / (mask.sum(-1).unsqueeze(-1).float()) |
|
|
|
ret = { |
|
"aggregate": aggregate, |
|
"embedded": embedded, |
|
"masks": mask, |
|
"hidden": encoded_layers[-1] |
|
} |
|
return ret |
|
|