|
from typing import Union, List |
|
|
|
from transformers import AutoTokenizer |
|
import torch |
|
|
|
|
|
class HFPTTokenizer(object): |
|
def __init__(self, pt_name=None): |
|
|
|
self.pt_name = pt_name |
|
self.added_sep_token = 0 |
|
self.added_cls_token = 0 |
|
self.enable_add_tokens = False |
|
self.gpt_special_case = ((not self.enable_add_tokens) and ('gpt' in self.pt_name)) |
|
|
|
if (pt_name is None): |
|
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') |
|
else: |
|
self.tokenizer = AutoTokenizer.from_pretrained(pt_name) |
|
|
|
|
|
|
|
if (self.enable_add_tokens): |
|
if (self.tokenizer.sep_token is None): |
|
self.tokenizer.add_special_tokens({'sep_token': '<SEP>'}) |
|
self.added_sep_token = 1 |
|
|
|
if (self.tokenizer.cls_token is None): |
|
self.tokenizer.add_special_tokens({'cls_token': '<CLS>'}) |
|
self.added_cls_token = 1 |
|
|
|
if (self.gpt_special_case): |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
self.tokenizer.sep_token = self.tokenizer.eos_token |
|
|
|
def get_eot_token(self): |
|
return self.tokenizer.encode(self.tokenizer.sep_token, add_special_tokens=False)[0] |
|
|
|
def get_sot_token(self): |
|
return self.tokenizer.encode(self.tokenizer.cls_token, add_special_tokens=False)[0] |
|
|
|
def get_eot_token_list(self): |
|
return self.tokenizer.encode(self.tokenizer.sep_token, add_special_tokens=False) |
|
|
|
def get_sot_token_list(self): |
|
return self.tokenizer.encode(self.tokenizer.cls_token, add_special_tokens=False) |
|
|
|
def get_tokenizer_obj(self): |
|
return self.tokenizer |
|
|
|
|
|
|
|
def check_added_tokens(self): |
|
return self.added_sep_token + self.added_cls_token |
|
|
|
def tokenize(self, texts: Union[str, List[str]], context_length: int = 77): |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
padding = 'max_length' |
|
|
|
seqstart = [] |
|
seqtok = [] |
|
seqend = [] |
|
|
|
max_length = context_length |
|
|
|
if (self.added_cls_token > 0): |
|
seqstart = self.get_sot_token_list() |
|
max_length = max_length - 1 |
|
|
|
if (self.added_sep_token > 0): |
|
seqend = self.get_eot_token_list() |
|
max_length = max_length - 1 |
|
|
|
tokens = self.tokenizer( |
|
texts, padding=padding, |
|
truncation=True, |
|
max_length=max_length |
|
)['input_ids'] |
|
|
|
for i in range(len(tokens)): |
|
tokens[i] = seqstart + tokens[i] + seqend |
|
|
|
if (self.gpt_special_case): |
|
for i in range(len(tokens)): |
|
tokens[i][-1] = self.get_eot_token() |
|
|
|
|
|
|
|
result = torch.Tensor(tokens).type(torch.LongTensor) |
|
|
|
return result |
|
|
|
def get_vocab_size(self): |
|
return self.tokenizer.vocab_size |
|
|
|
def __call__(self, texts: Union[str, List[str]], context_length: int = 77): |
|
return self.tokenize(texts, context_length) |
|
|