|
from copy import deepcopy |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
|
|
class RNNEnoder(nn.Module): |
|
def __init__(self, cfg): |
|
super(RNNEnoder, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.rnn_type = cfg.MODEL.LANGUAGE_BACKBONE.RNN_TYPE |
|
self.variable_length = cfg.MODEL.LANGUAGE_BACKBONE.VARIABLE_LENGTH |
|
self.word_embedding_size = cfg.MODEL.LANGUAGE_BACKBONE.WORD_EMBEDDING_SIZE |
|
self.word_vec_size = cfg.MODEL.LANGUAGE_BACKBONE.WORD_VEC_SIZE |
|
self.hidden_size = cfg.MODEL.LANGUAGE_BACKBONE.HIDDEN_SIZE |
|
self.bidirectional = cfg.MODEL.LANGUAGE_BACKBONE.BIDIRECTIONAL |
|
self.input_dropout_p = cfg.MODEL.LANGUAGE_BACKBONE.INPUT_DROPOUT_P |
|
self.dropout_p = cfg.MODEL.LANGUAGE_BACKBONE.DROPOUT_P |
|
self.n_layers = cfg.MODEL.LANGUAGE_BACKBONE.N_LAYERS |
|
self.corpus_path = cfg.MODEL.LANGUAGE_BACKBONE.CORPUS_PATH |
|
self.vocab_size = cfg.MODEL.LANGUAGE_BACKBONE.VOCAB_SIZE |
|
|
|
|
|
self.embedding = nn.Embedding(self.vocab_size, self.word_embedding_size) |
|
self.input_dropout = nn.Dropout(self.input_dropout_p) |
|
self.mlp = nn.Sequential(nn.Linear(self.word_embedding_size, self.word_vec_size), nn.ReLU()) |
|
self.rnn = getattr(nn, self.rnn_type.upper())(self.word_vec_size, |
|
self.hidden_size, |
|
self.n_layers, |
|
batch_first=True, |
|
bidirectional=self.bidirectional, |
|
dropout=self.dropout_p) |
|
self.num_dirs = 2 if self.bidirectional else 1 |
|
|
|
def forward(self, input, mask=None): |
|
word_id = input |
|
max_len = (word_id != 0).sum(1).max().item() |
|
word_id = word_id[:, :max_len] |
|
|
|
output, hidden, embedded, final_output = self.RNNEncode(word_id) |
|
return { |
|
'hidden': hidden, |
|
'output': output, |
|
'embedded': embedded, |
|
'final_output': final_output, |
|
} |
|
|
|
def encode(self, input_labels): |
|
""" |
|
Inputs: |
|
- input_labels: Variable long (batch, seq_len) |
|
Outputs: |
|
- output : Variable float (batch, max_len, hidden_size * num_dirs) |
|
- hidden : Variable float (batch, num_layers * num_dirs * hidden_size) |
|
- embedded: Variable float (batch, max_len, word_vec_size) |
|
""" |
|
device = input_labels.device |
|
if self.variable_length: |
|
input_lengths_list, sorted_lengths_list, sort_idxs, recover_idxs = self.sort_inputs(input_labels) |
|
input_labels = input_labels[sort_idxs] |
|
|
|
embedded = self.embedding(input_labels) |
|
embedded = self.input_dropout(embedded) |
|
embedded = self.mlp(embedded) |
|
|
|
if self.variable_length: |
|
if self.variable_length: |
|
embedded = nn.utils.rnn.pack_padded_sequence(embedded, \ |
|
sorted_lengths_list, \ |
|
batch_first=True) |
|
|
|
self.rnn.flatten_parameters() |
|
output, hidden = self.rnn(embedded) |
|
|
|
|
|
if self.variable_length: |
|
|
|
embedded, _ = nn.utils.rnn.pad_packed_sequence(embedded, |
|
batch_first=True) |
|
embedded = embedded[recover_idxs] |
|
|
|
|
|
output, _ = nn.utils.rnn.pad_packed_sequence(output, |
|
batch_first=True) |
|
output = output[recover_idxs] |
|
|
|
|
|
if self.rnn_type == 'lstm': |
|
hidden = hidden[0] |
|
hidden = hidden[:, recover_idxs, :] |
|
hidden = hidden.transpose(0, 1).contiguous() |
|
hidden = hidden.view(hidden.size(0), -1) |
|
|
|
|
|
finnal_output = [] |
|
for ii in range(output.shape[0]): |
|
finnal_output.append(output[ii, int(input_lengths_list[ii] - 1), :]) |
|
finnal_output = torch.stack(finnal_output, dim=0) |
|
|
|
return output, hidden, embedded, finnal_output |
|
|
|
def sort_inputs(self, input_labels): |
|
device = input_labels.device |
|
input_lengths = (input_labels != 0).sum(1) |
|
input_lengths_list = input_lengths.data.cpu().numpy().tolist() |
|
sorted_input_lengths_list = np.sort(input_lengths_list)[::-1].tolist() |
|
sort_idxs = np.argsort(input_lengths_list)[::-1].tolist() |
|
s2r = {s: r for r, s in enumerate(sort_idxs)} |
|
recover_idxs = [s2r[s] for s in range(len(input_lengths_list))] |
|
assert max(input_lengths_list) == input_labels.size(1) |
|
|
|
sort_idxs = input_labels.data.new(sort_idxs).long().to(device) |
|
recover_idxs = input_labels.data.new(recover_idxs).long().to(device) |
|
return input_lengths_list, sorted_input_lengths_list, sort_idxs, recover_idxs |
|
|