|
|
|
""" |
|
Miscellaneous utility functions |
|
""" |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from maskrcnn_benchmark.config import cfg |
|
from maskrcnn_benchmark.layers import Conv2d, DYReLU |
|
from maskrcnn_benchmark.modeling.poolers import Pooler |
|
|
|
|
|
def get_group_gn(dim, dim_per_gp, num_groups): |
|
"""get number of groups used by GroupNorm, based on number of channels.""" |
|
assert dim_per_gp == -1 or num_groups == -1, \ |
|
"GroupNorm: can only specify G or C/G." |
|
|
|
if dim_per_gp > 0: |
|
assert dim % dim_per_gp == 0, \ |
|
"dim: {}, dim_per_gp: {}".format(dim, dim_per_gp) |
|
group_gn = dim // dim_per_gp |
|
else: |
|
assert dim % num_groups == 0, \ |
|
"dim: {}, num_groups: {}".format(dim, num_groups) |
|
group_gn = num_groups |
|
|
|
return group_gn |
|
|
|
|
|
def group_norm(out_channels, affine=True, divisor=1): |
|
out_channels = out_channels // divisor |
|
dim_per_gp = cfg.MODEL.GROUP_NORM.DIM_PER_GP // divisor |
|
num_groups = cfg.MODEL.GROUP_NORM.NUM_GROUPS // divisor |
|
eps = cfg.MODEL.GROUP_NORM.EPSILON |
|
return torch.nn.GroupNorm( |
|
get_group_gn(out_channels, dim_per_gp, num_groups), |
|
out_channels, |
|
eps, |
|
affine |
|
) |
|
|
|
|
|
def make_conv3x3( |
|
in_channels, |
|
out_channels, |
|
dilation=1, |
|
stride=1, |
|
use_gn=False, |
|
use_relu=False, |
|
kaiming_init=True |
|
): |
|
conv = Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False if use_gn else True |
|
) |
|
if kaiming_init: |
|
nn.init.kaiming_normal_( |
|
conv.weight, mode="fan_out", nonlinearity="relu" |
|
) |
|
else: |
|
torch.nn.init.normal_(conv.weight, std=0.01) |
|
if not use_gn: |
|
nn.init.constant_(conv.bias, 0) |
|
module = [conv,] |
|
if use_gn: |
|
module.append(group_norm(out_channels)) |
|
if use_relu: |
|
module.append(nn.ReLU(inplace=True)) |
|
if len(module) > 1: |
|
return nn.Sequential(*module) |
|
return conv |
|
|
|
|
|
def make_fc(dim_in, hidden_dim, use_gn=False): |
|
''' |
|
Caffe2 implementation uses XavierFill, which in fact |
|
corresponds to kaiming_uniform_ in PyTorch |
|
''' |
|
if use_gn: |
|
fc = nn.Linear(dim_in, hidden_dim, bias=False) |
|
nn.init.kaiming_uniform_(fc.weight, a=1) |
|
return nn.Sequential(fc, group_norm(hidden_dim)) |
|
fc = nn.Linear(dim_in, hidden_dim) |
|
nn.init.kaiming_uniform_(fc.weight, a=1) |
|
nn.init.constant_(fc.bias, 0) |
|
return fc |
|
|
|
|
|
def conv_with_kaiming_uniform(use_gn=False, use_relu=False, use_dyrelu=False): |
|
def make_conv( |
|
in_channels, out_channels, kernel_size, stride=1, dilation=1 |
|
): |
|
conv = Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=dilation * (kernel_size - 1) // 2, |
|
dilation=dilation, |
|
bias=False if use_gn else True |
|
) |
|
|
|
|
|
nn.init.kaiming_uniform_(conv.weight, a=1) |
|
if not use_gn: |
|
nn.init.constant_(conv.bias, 0) |
|
module = [conv,] |
|
if use_gn: |
|
module.append(group_norm(out_channels)) |
|
if use_relu: |
|
module.append(nn.ReLU(inplace=True)) |
|
if use_dyrelu: |
|
module.append(DYReLU(out_channels, out_channels, use_spatial=True)) |
|
if len(module) > 1: |
|
return nn.Sequential(*module) |
|
return conv |
|
|
|
return make_conv |
|
|