|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
from maskrcnn_benchmark.structures.image_list import ImageList |
|
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist |
|
|
|
class BufferList(nn.Module): |
|
""" |
|
Similar to nn.ParameterList, but for buffers |
|
""" |
|
|
|
def __init__(self, buffers=None): |
|
super(BufferList, self).__init__() |
|
if buffers is not None: |
|
self.extend(buffers) |
|
|
|
def extend(self, buffers): |
|
offset = len(self) |
|
for i, buffer in enumerate(buffers): |
|
self.register_buffer(str(offset + i), buffer) |
|
return self |
|
|
|
def __len__(self): |
|
return len(self._buffers) |
|
|
|
def __iter__(self): |
|
return iter(self._buffers.values()) |
|
|
|
|
|
class AnchorGenerator(nn.Module): |
|
""" |
|
For a set of image sizes and feature maps, computes a set |
|
of anchors |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sizes=(128, 256, 512), |
|
aspect_ratios=(0.5, 1.0, 2.0), |
|
anchor_strides=(8, 16, 32), |
|
straddle_thresh=0, |
|
): |
|
super(AnchorGenerator, self).__init__() |
|
|
|
if len(anchor_strides) == 1: |
|
anchor_stride = anchor_strides[0] |
|
cell_anchors = [ |
|
generate_anchors(anchor_stride, sizes, aspect_ratios).float() |
|
] |
|
else: |
|
if len(anchor_strides) != len(sizes): |
|
raise RuntimeError("FPN should have #anchor_strides == #sizes") |
|
cell_anchors = [ |
|
generate_anchors( |
|
anchor_stride, |
|
size if isinstance(size, (tuple, list)) else (size,), |
|
aspect_ratios |
|
).float() |
|
for anchor_stride, size in zip(anchor_strides, sizes) |
|
] |
|
self.strides = anchor_strides |
|
self.cell_anchors = BufferList(cell_anchors) |
|
self.straddle_thresh = straddle_thresh |
|
|
|
def num_anchors_per_location(self): |
|
return [len(cell_anchors) for cell_anchors in self.cell_anchors] |
|
|
|
def grid_anchors(self, grid_sizes): |
|
anchors = [] |
|
for size, stride, base_anchors in zip( |
|
grid_sizes, self.strides, self.cell_anchors |
|
): |
|
grid_height, grid_width = size |
|
device = base_anchors.device |
|
shifts_x = torch.arange( |
|
0, grid_width * stride, step=stride, dtype=torch.float32, device=device |
|
) |
|
shifts_y = torch.arange( |
|
0, grid_height * stride, step=stride, dtype=torch.float32, device=device |
|
) |
|
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) |
|
shift_x = shift_x.reshape(-1) |
|
shift_y = shift_y.reshape(-1) |
|
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) |
|
|
|
anchors.append( |
|
(shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4) |
|
) |
|
|
|
return anchors |
|
|
|
def add_visibility_to(self, boxlist): |
|
image_width, image_height = boxlist.size |
|
anchors = boxlist.bbox |
|
if self.straddle_thresh >= 0: |
|
inds_inside = ( |
|
(anchors[..., 0] >= -self.straddle_thresh) |
|
& (anchors[..., 1] >= -self.straddle_thresh) |
|
& (anchors[..., 2] < image_width + self.straddle_thresh) |
|
& (anchors[..., 3] < image_height + self.straddle_thresh) |
|
) |
|
else: |
|
device = anchors.device |
|
inds_inside = torch.ones(anchors.shape[0], dtype=torch.bool, device=device) |
|
boxlist.add_field("visibility", inds_inside) |
|
|
|
def forward(self, image_list, feature_maps): |
|
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] |
|
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) |
|
anchors = [] |
|
if isinstance(image_list, ImageList): |
|
for i, (image_height, image_width) in enumerate(image_list.image_sizes): |
|
anchors_in_image = [] |
|
for anchors_per_feature_map in anchors_over_all_feature_maps: |
|
boxlist = BoxList( |
|
anchors_per_feature_map, (image_width, image_height), mode="xyxy" |
|
) |
|
self.add_visibility_to(boxlist) |
|
anchors_in_image.append(boxlist) |
|
anchors.append(anchors_in_image) |
|
else: |
|
image_height, image_width = [int(x) for x in image_list.size()[-2:]] |
|
anchors_in_image = [] |
|
for anchors_per_feature_map in anchors_over_all_feature_maps: |
|
boxlist = BoxList( |
|
anchors_per_feature_map, (image_width, image_height), mode="xyxy" |
|
) |
|
self.add_visibility_to(boxlist) |
|
anchors_in_image.append(boxlist) |
|
anchors.append(anchors_in_image) |
|
return anchors |
|
|
|
|
|
def make_anchor_generator(config): |
|
anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES |
|
aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS |
|
anchor_stride = config.MODEL.RPN.ANCHOR_STRIDE |
|
straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH |
|
|
|
if config.MODEL.RPN.USE_FPN: |
|
assert len(anchor_stride) == len( |
|
anchor_sizes |
|
), "FPN should have len(ANCHOR_STRIDE) == len(ANCHOR_SIZES)" |
|
else: |
|
assert len(anchor_stride) == 1, "Non-FPN should have a single ANCHOR_STRIDE" |
|
anchor_generator = AnchorGenerator( |
|
anchor_sizes, aspect_ratios, anchor_stride, straddle_thresh |
|
) |
|
return anchor_generator |
|
|
|
|
|
def make_anchor_generator_complex(config): |
|
anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES |
|
aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS |
|
anchor_strides = config.MODEL.RPN.ANCHOR_STRIDE |
|
straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH |
|
octave = config.MODEL.RPN.OCTAVE |
|
scales_per_octave = config.MODEL.RPN.SCALES_PER_OCTAVE |
|
|
|
if config.MODEL.RPN.USE_FPN: |
|
assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now" |
|
new_anchor_sizes = [] |
|
for size in anchor_sizes: |
|
per_layer_anchor_sizes = [] |
|
for scale_per_octave in range(scales_per_octave): |
|
octave_scale = octave ** (scale_per_octave / float(scales_per_octave)) |
|
per_layer_anchor_sizes.append(octave_scale * size) |
|
new_anchor_sizes.append(tuple(per_layer_anchor_sizes)) |
|
else: |
|
assert len(anchor_strides) == 1, "Non-FPN should have a single ANCHOR_STRIDE" |
|
new_anchor_sizes = anchor_sizes |
|
|
|
anchor_generator = AnchorGenerator( |
|
tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh |
|
) |
|
return anchor_generator |
|
|
|
|
|
class CenterAnchorGenerator(nn.Module): |
|
""" |
|
For a set of image sizes and feature maps, computes a set |
|
of anchors |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sizes=(128, 256, 512), |
|
aspect_ratios=(0.5, 1.0, 2.0), |
|
anchor_strides=(8, 16, 32), |
|
straddle_thresh=0, |
|
anchor_shift=(0.0, 0.0, 0.0, 0.0), |
|
use_relative=False |
|
): |
|
super(CenterAnchorGenerator, self).__init__() |
|
|
|
self.sizes = sizes |
|
self.aspect_ratios = aspect_ratios |
|
self.strides = anchor_strides |
|
self.straddle_thresh = straddle_thresh |
|
self.anchor_shift = anchor_shift |
|
self.use_relative = use_relative |
|
|
|
def add_visibility_to(self, boxlist): |
|
image_width, image_height = boxlist.size |
|
anchors = boxlist.bbox |
|
if self.straddle_thresh >= 0: |
|
inds_inside = ( |
|
(anchors[..., 0] >= -self.straddle_thresh) |
|
& (anchors[..., 1] >= -self.straddle_thresh) |
|
& (anchors[..., 2] < image_width + self.straddle_thresh) |
|
& (anchors[..., 3] < image_height + self.straddle_thresh) |
|
) |
|
else: |
|
device = anchors.device |
|
inds_inside = torch.ones(anchors.shape[0], dtype=torch.uint8, device=device) |
|
boxlist.add_field("visibility", inds_inside) |
|
|
|
def forward(self, centers, image_sizes, feature_maps): |
|
shift_left, shift_top, shift_right, shift_down = self.anchor_shift |
|
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] |
|
anchors = [] |
|
for i, ((image_height, image_width), center_bbox) in enumerate(zip(image_sizes, centers)): |
|
center = center_bbox.get_field("centers") |
|
boxlist_per_level = [] |
|
for size, fsize in zip(self.sizes, grid_sizes): |
|
for ratios in self.aspect_ratios: |
|
|
|
size_ratios = size*size / ratios |
|
ws = np.round(np.sqrt(size_ratios)) |
|
hs = np.round(ws * ratios) |
|
|
|
anchors_per_level = torch.cat( |
|
( |
|
center[:,0,None] - 0.5 * (1 + shift_left) * (ws - 1), |
|
center[:,1,None] - 0.5 * (1 + shift_top) * (hs - 1), |
|
center[:,0,None] + 0.5 * (1 + shift_right) * (ws - 1), |
|
center[:,1,None] + 0.5 * (1 + shift_down) * (hs - 1), |
|
), |
|
dim=1 |
|
) |
|
boxlist = BoxList(anchors_per_level, (image_width, image_height), mode="xyxy") |
|
boxlist.add_field('cbox', center_bbox) |
|
self.add_visibility_to(boxlist) |
|
boxlist_per_level.append(boxlist) |
|
if self.use_relative: |
|
area = center_bbox.area() |
|
for ratios in self.aspect_ratios: |
|
|
|
size_ratios = area / ratios |
|
ws = torch.round(torch.sqrt(size_ratios)) |
|
hs = torch.round(ws * ratios) |
|
|
|
anchors_per_level = torch.stack( |
|
( |
|
center[:,0] - (1 + shift_left) * ws, |
|
center[:,1] - (1 + shift_top) * hs, |
|
center[:,0] + (1 + shift_right) * ws, |
|
center[:,1] + (1 + shift_down) * hs, |
|
), |
|
dim=1 |
|
) |
|
boxlist = BoxList(anchors_per_level, (image_width, image_height), mode="xyxy") |
|
boxlist.add_field('cbox', center_bbox) |
|
self.add_visibility_to(boxlist) |
|
boxlist_per_level.append(boxlist) |
|
anchors_in_image = cat_boxlist(boxlist_per_level) |
|
anchors.append(anchors_in_image) |
|
return anchors |
|
|
|
|
|
def make_center_anchor_generator(config): |
|
anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES |
|
aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS |
|
anchor_strides = config.MODEL.RPN.ANCHOR_STRIDE |
|
straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH |
|
octave = config.MODEL.RPN.OCTAVE |
|
scales_per_octave = config.MODEL.RPN.SCALES_PER_OCTAVE |
|
anchor_shift = config.MODEL.RPN.ANCHOR_SHIFT |
|
use_relative = config.MODEL.RPN.USE_RELATIVE_SIZE |
|
|
|
if config.MODEL.RPN.USE_FPN: |
|
assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now" |
|
new_anchor_sizes = [] |
|
for size in anchor_sizes: |
|
per_layer_anchor_sizes = [] |
|
for scale_per_octave in range(scales_per_octave): |
|
octave_scale = octave ** (scale_per_octave / float(scales_per_octave)) |
|
per_layer_anchor_sizes.append(octave_scale * size) |
|
new_anchor_sizes.append(tuple(per_layer_anchor_sizes)) |
|
else: |
|
assert len(anchor_strides) == 1, "Non-FPN should have a single ANCHOR_STRIDE" |
|
new_anchor_sizes = anchor_sizes |
|
|
|
anchor_generator = CenterAnchorGenerator( |
|
tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh, anchor_shift, use_relative |
|
) |
|
return anchor_generator |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_anchors( |
|
stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2) |
|
): |
|
"""Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors |
|
are centered on stride / 2, have (approximate) sqrt areas of the specified |
|
sizes, and aspect ratios as given. |
|
""" |
|
return _generate_anchors( |
|
stride, |
|
np.array(sizes, dtype=np.float64) / stride, |
|
np.array(aspect_ratios, dtype=np.float64), |
|
) |
|
|
|
|
|
def _generate_anchors(base_size, scales, aspect_ratios): |
|
"""Generate anchor (reference) windows by enumerating aspect ratios X |
|
scales wrt a reference (0, 0, base_size - 1, base_size - 1) window. |
|
""" |
|
anchor = np.array([1, 1, base_size, base_size], dtype=np.float64) - 1 |
|
anchors = _ratio_enum(anchor, aspect_ratios) |
|
anchors = np.vstack( |
|
[_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])] |
|
) |
|
return torch.from_numpy(anchors) |
|
|
|
|
|
def _whctrs(anchor): |
|
"""Return width, height, x center, and y center for an anchor (window).""" |
|
w = anchor[2] - anchor[0] + 1 |
|
h = anchor[3] - anchor[1] + 1 |
|
x_ctr = anchor[0] + 0.5 * (w - 1) |
|
y_ctr = anchor[1] + 0.5 * (h - 1) |
|
return w, h, x_ctr, y_ctr |
|
|
|
|
|
def _mkanchors(ws, hs, x_ctr, y_ctr): |
|
"""Given a vector of widths (ws) and heights (hs) around a center |
|
(x_ctr, y_ctr), output a set of anchors (windows). |
|
""" |
|
ws = ws[:, np.newaxis] |
|
hs = hs[:, np.newaxis] |
|
anchors = np.hstack( |
|
( |
|
x_ctr - 0.5 * (ws - 1), |
|
y_ctr - 0.5 * (hs - 1), |
|
x_ctr + 0.5 * (ws - 1), |
|
y_ctr + 0.5 * (hs - 1), |
|
) |
|
) |
|
return anchors |
|
|
|
|
|
def _ratio_enum(anchor, ratios): |
|
"""Enumerate a set of anchors for each aspect ratio wrt an anchor.""" |
|
w, h, x_ctr, y_ctr = _whctrs(anchor) |
|
size = w * h |
|
size_ratios = size / ratios |
|
ws = np.round(np.sqrt(size_ratios)) |
|
hs = np.round(ws * ratios) |
|
anchors = _mkanchors(ws, hs, x_ctr, y_ctr) |
|
return anchors |
|
|
|
|
|
def _scale_enum(anchor, scales): |
|
"""Enumerate a set of anchors for each scale wrt an anchor.""" |
|
w, h, x_ctr, y_ctr = _whctrs(anchor) |
|
ws = w * scales |
|
hs = h * scales |
|
anchors = _mkanchors(ws, hs, x_ctr, y_ctr) |
|
return anchors |
|
|