|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from .inference import make_atss_postprocessor |
|
from .loss import make_atss_loss_evaluator |
|
|
|
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist |
|
from maskrcnn_benchmark.layers import Scale, DFConv2d, DYReLU, SELayer |
|
from .anchor_generator import make_anchor_generator_complex |
|
|
|
|
|
class BoxCoder(object): |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
|
|
def encode(self, gt_boxes, anchors): |
|
|
|
TO_REMOVE = 1 |
|
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE |
|
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE |
|
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 |
|
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 |
|
|
|
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE |
|
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE |
|
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2 |
|
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2 |
|
|
|
wx, wy, ww, wh = (10., 10., 5., 5.) |
|
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths |
|
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights |
|
targets_dw = ww * torch.log(gt_widths / ex_widths) |
|
targets_dh = wh * torch.log(gt_heights / ex_heights) |
|
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) |
|
|
|
return targets |
|
|
|
def decode(self, preds, anchors): |
|
|
|
anchors = anchors.to(preds.dtype) |
|
|
|
TO_REMOVE = 1 |
|
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE |
|
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE |
|
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 |
|
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 |
|
|
|
wx, wy, ww, wh = (10., 10., 5., 5.) |
|
dx = preds[:, 0::4] / wx |
|
dy = preds[:, 1::4] / wy |
|
dw = preds[:, 2::4] / ww |
|
dh = preds[:, 3::4] / wh |
|
|
|
|
|
dw = torch.clamp(dw, max=math.log(1000. / 16)) |
|
dh = torch.clamp(dh, max=math.log(1000. / 16)) |
|
|
|
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] |
|
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] |
|
pred_w = torch.exp(dw) * widths[:, None] |
|
pred_h = torch.exp(dh) * heights[:, None] |
|
|
|
pred_boxes = torch.zeros_like(preds) |
|
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1) |
|
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1) |
|
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1) |
|
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1) |
|
|
|
return pred_boxes |
|
|
|
|
|
class ATSSHead(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(ATSSHead, self).__init__() |
|
self.cfg = cfg |
|
num_classes = cfg.MODEL.ATSS.NUM_CLASSES - 1 |
|
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE |
|
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
channels = cfg.MODEL.ATSS.CHANNELS |
|
use_gn = cfg.MODEL.ATSS.USE_GN |
|
use_bn = cfg.MODEL.ATSS.USE_BN |
|
use_dcn_in_tower = cfg.MODEL.ATSS.USE_DFCONV |
|
use_dyrelu = cfg.MODEL.ATSS.USE_DYRELU |
|
use_se = cfg.MODEL.ATSS.USE_SE |
|
|
|
cls_tower = [] |
|
bbox_tower = [] |
|
for i in range(cfg.MODEL.ATSS.NUM_CONVS): |
|
if use_dcn_in_tower and \ |
|
i == cfg.MODEL.ATSS.NUM_CONVS - 1: |
|
conv_func = DFConv2d |
|
else: |
|
conv_func = nn.Conv2d |
|
|
|
cls_tower.append( |
|
conv_func( |
|
in_channels if i==0 else channels, |
|
channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True |
|
) |
|
) |
|
if use_gn: |
|
cls_tower.append(nn.GroupNorm(32, channels)) |
|
if use_bn: |
|
cls_tower.append(nn.BatchNorm2d(channels)) |
|
if use_se: |
|
cls_tower.append(SELayer(channels)) |
|
if use_dyrelu: |
|
cls_tower.append(DYReLU(channels, channels)) |
|
else: |
|
cls_tower.append(nn.ReLU()) |
|
|
|
bbox_tower.append( |
|
conv_func( |
|
in_channels if i == 0 else channels, |
|
channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True |
|
) |
|
) |
|
if use_gn: |
|
bbox_tower.append(nn.GroupNorm(32, channels)) |
|
if use_bn: |
|
bbox_tower.append(nn.BatchNorm2d(channels)) |
|
if use_se: |
|
bbox_tower.append(SELayer(channels)) |
|
if use_dyrelu: |
|
bbox_tower.append(DYReLU(channels, channels)) |
|
else: |
|
bbox_tower.append(nn.ReLU()) |
|
|
|
self.add_module('cls_tower', nn.Sequential(*cls_tower)) |
|
self.add_module('bbox_tower', nn.Sequential(*bbox_tower)) |
|
self.cls_logits = nn.Conv2d( |
|
channels, num_anchors * num_classes, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
self.bbox_pred = nn.Conv2d( |
|
channels, num_anchors * 4, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
self.centerness = nn.Conv2d( |
|
channels, num_anchors * 1, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
|
|
|
|
for modules in [self.cls_tower, self.bbox_tower, |
|
self.cls_logits, self.bbox_pred, |
|
self.centerness]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
|
|
prior_prob = cfg.MODEL.ATSS.PRIOR_PROB |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
torch.nn.init.constant_(self.cls_logits.bias, bias_value) |
|
|
|
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) |
|
|
|
def forward(self, x): |
|
logits = [] |
|
bbox_reg = [] |
|
centerness = [] |
|
for l, feature in enumerate(x): |
|
cls_tower = self.cls_tower(feature) |
|
box_tower = self.bbox_tower(feature) |
|
|
|
logits.append(self.cls_logits(cls_tower)) |
|
|
|
bbox_pred = self.scales[l](self.bbox_pred(box_tower)) |
|
bbox_reg.append(bbox_pred) |
|
|
|
centerness.append(self.centerness(box_tower)) |
|
return logits, bbox_reg, centerness |
|
|
|
|
|
class ATSSModule(torch.nn.Module): |
|
|
|
def __init__(self, cfg): |
|
super(ATSSModule, self).__init__() |
|
self.cfg = cfg |
|
self.head = ATSSHead(cfg) |
|
box_coder = BoxCoder(cfg) |
|
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder) |
|
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True) |
|
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False) |
|
self.anchor_generator = make_anchor_generator_complex(cfg) |
|
|
|
def forward(self, images, features, targets=None): |
|
box_cls, box_regression, centerness = self.head(features) |
|
anchors = self.anchor_generator(images, features) |
|
|
|
if self.training: |
|
return self._forward_train(box_cls, box_regression, centerness, targets, anchors) |
|
else: |
|
return self._forward_test(box_cls, box_regression, centerness, anchors) |
|
|
|
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors): |
|
loss_box_cls, loss_box_reg, loss_centerness = self.loss_evaluator( |
|
box_cls, box_regression, centerness, targets, anchors |
|
) |
|
losses = { |
|
"loss_cls": loss_box_cls, |
|
"loss_reg": loss_box_reg, |
|
"loss_centerness": loss_centerness |
|
} |
|
if self.cfg.MODEL.RPN_ONLY: |
|
return None, losses |
|
else: |
|
boxes = self.box_selector_train(box_cls, box_regression, centerness, anchors) |
|
train_boxes = [] |
|
for b, a in zip(boxes, anchors): |
|
a = cat_boxlist(a) |
|
b.add_field("visibility", torch.ones(b.bbox.shape[0], dtype=torch.bool, device=b.bbox.device)) |
|
del b.extra_fields['scores'] |
|
del b.extra_fields['labels'] |
|
train_boxes.append(cat_boxlist([b, a])) |
|
return train_boxes, losses |
|
|
|
def _forward_test(self, box_cls, box_regression, centerness, anchors): |
|
boxes = self.box_selector_test(box_cls, box_regression, centerness, anchors) |
|
return boxes, {} |
|
|