|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from .inference import make_atss_postprocessor |
|
from .loss import make_atss_loss_evaluator |
|
from .anchor_generator import make_anchor_generator_complex |
|
|
|
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist |
|
from maskrcnn_benchmark.layers import Scale, DYReLU, SELayer, ModulatedDeformConv |
|
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d |
|
from maskrcnn_benchmark.modeling.backbone.fbnet import * |
|
|
|
|
|
class h_sigmoid(nn.Module): |
|
def __init__(self, inplace=True, h_max=1): |
|
super(h_sigmoid, self).__init__() |
|
self.relu = nn.ReLU6(inplace=inplace) |
|
self.h_max = h_max |
|
|
|
def forward(self, x): |
|
return self.relu(x + 3) * self.h_max / 6 |
|
|
|
|
|
class BoxCoder(object): |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
|
|
def encode(self, gt_boxes, anchors): |
|
TO_REMOVE = 1 |
|
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE |
|
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE |
|
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 |
|
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 |
|
|
|
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE |
|
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE |
|
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2 |
|
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2 |
|
|
|
wx, wy, ww, wh = (10., 10., 5., 5.) |
|
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths |
|
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights |
|
targets_dw = ww * torch.log(gt_widths / ex_widths) |
|
targets_dh = wh * torch.log(gt_heights / ex_heights) |
|
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) |
|
|
|
return targets |
|
|
|
def decode(self, preds, anchors): |
|
anchors = anchors.to(preds.dtype) |
|
|
|
TO_REMOVE = 1 |
|
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE |
|
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE |
|
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 |
|
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 |
|
|
|
wx, wy, ww, wh = (10., 10., 5., 5.) |
|
dx = preds[:, 0::4] / wx |
|
dy = preds[:, 1::4] / wy |
|
dw = preds[:, 2::4] / ww |
|
dh = preds[:, 3::4] / wh |
|
|
|
|
|
dw = torch.clamp(dw, max=math.log(1000. / 16)) |
|
dh = torch.clamp(dh, max=math.log(1000. / 16)) |
|
|
|
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] |
|
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] |
|
pred_w = torch.exp(dw) * widths[:, None] |
|
pred_h = torch.exp(dh) * heights[:, None] |
|
|
|
pred_boxes = torch.zeros_like(preds) |
|
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1) |
|
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1) |
|
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1) |
|
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1) |
|
|
|
return pred_boxes |
|
|
|
|
|
class Conv3x3Norm(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
groups=1, |
|
deformable=False, |
|
bn_type=None): |
|
super(Conv3x3Norm, self).__init__() |
|
|
|
if deformable: |
|
self.conv = ModulatedDeformConv(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, |
|
groups=groups) |
|
else: |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups) |
|
|
|
if isinstance(bn_type, (list, tuple)): |
|
assert len(bn_type) == 2 |
|
assert bn_type[0] == "gn" |
|
gn_group = bn_type[1] |
|
bn_type = bn_type[0] |
|
|
|
if bn_type == "bn": |
|
bn_op = nn.BatchNorm2d(out_channels) |
|
elif bn_type == "sbn": |
|
bn_op = nn.SyncBatchNorm(out_channels) |
|
elif bn_type == "nsbn": |
|
bn_op = NaiveSyncBatchNorm2d(out_channels) |
|
elif bn_type == "gn": |
|
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=out_channels) |
|
elif bn_type == "af": |
|
bn_op = FrozenBatchNorm2d(out_channels) |
|
if bn_type is not None: |
|
self.bn = bn_op |
|
else: |
|
self.bn = None |
|
|
|
def forward(self, input, **kwargs): |
|
x = self.conv(input, **kwargs) |
|
if self.bn: |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class DyConv(torch.nn.Module): |
|
def __init__(self, |
|
in_channels=256, |
|
out_channels=256, |
|
conv_func=nn.Conv2d, |
|
use_dyfuse=True, |
|
use_dyrelu=False, |
|
use_deform=False |
|
): |
|
super(DyConv, self).__init__() |
|
|
|
self.DyConv = nn.ModuleList() |
|
self.DyConv.append(conv_func(in_channels, out_channels, 1)) |
|
self.DyConv.append(conv_func(in_channels, out_channels, 1)) |
|
self.DyConv.append(conv_func(in_channels, out_channels, 2)) |
|
|
|
if use_dyfuse: |
|
self.AttnConv = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, 1, kernel_size=1), |
|
nn.ReLU(inplace=True)) |
|
self.h_sigmoid = h_sigmoid() |
|
else: |
|
self.AttnConv = None |
|
|
|
if use_dyrelu: |
|
self.relu = DYReLU(in_channels, out_channels) |
|
else: |
|
self.relu = nn.ReLU() |
|
|
|
if use_deform: |
|
self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1) |
|
else: |
|
self.offset = None |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
for m in self.DyConv.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight.data, 0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
if self.AttnConv is not None: |
|
for m in self.AttnConv.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight.data, 0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
next_x = [] |
|
for level, feature in enumerate(x): |
|
|
|
conv_args = dict() |
|
if self.offset is not None: |
|
offset_mask = self.offset(feature) |
|
offset = offset_mask[:, :18, :, :] |
|
mask = offset_mask[:, 18:, :, :].sigmoid() |
|
conv_args = dict(offset=offset, mask=mask) |
|
|
|
temp_fea = [self.DyConv[1](feature, **conv_args)] |
|
|
|
if level > 0: |
|
temp_fea.append(self.DyConv[2](x[level - 1], **conv_args)) |
|
if level < len(x) - 1: |
|
temp_fea.append(F.upsample_bilinear(self.DyConv[0](x[level + 1], **conv_args), |
|
size=[feature.size(2), feature.size(3)])) |
|
mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False) |
|
|
|
if self.AttnConv is not None: |
|
attn_fea = [] |
|
res_fea = [] |
|
for fea in temp_fea: |
|
res_fea.append(fea) |
|
attn_fea.append(self.AttnConv(fea)) |
|
|
|
res_fea = torch.stack(res_fea) |
|
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea)) |
|
|
|
mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False) |
|
|
|
next_x.append(mean_fea) |
|
|
|
next_x = [self.relu(item) for item in next_x] |
|
return next_x |
|
|
|
|
|
class DyHead(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(DyHead, self).__init__() |
|
self.cfg = cfg |
|
num_classes = cfg.MODEL.DYHEAD.NUM_CLASSES - 1 |
|
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE |
|
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
channels = cfg.MODEL.DYHEAD.CHANNELS |
|
if cfg.MODEL.DYHEAD.USE_GN: |
|
bn_type = ['gn', cfg.MODEL.GROUP_NORM.NUM_GROUPS] |
|
elif cfg.MODEL.DYHEAD.USE_NSYNCBN: |
|
bn_type = 'nsbn' |
|
elif cfg.MODEL.DYHEAD.USE_SYNCBN: |
|
bn_type = 'sbn' |
|
else: |
|
bn_type = None |
|
|
|
use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU |
|
use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE |
|
use_deform = cfg.MODEL.DYHEAD.USE_DFCONV |
|
|
|
if cfg.MODEL.DYHEAD.CONV_FUNC: |
|
conv_func = lambda i, o, s: eval(cfg.MODEL.DYHEAD.CONV_FUNC)(i, o, s, bn_type=bn_type) |
|
else: |
|
conv_func = lambda i, o, s: Conv3x3Norm(i, o, s, deformable=use_deform, bn_type=bn_type) |
|
|
|
dyhead_tower = [] |
|
for i in range(cfg.MODEL.DYHEAD.NUM_CONVS): |
|
dyhead_tower.append( |
|
DyConv( |
|
in_channels if i == 0 else channels, |
|
channels, |
|
conv_func=conv_func, |
|
use_dyrelu=(use_dyrelu and in_channels == channels) if i == 0 else use_dyrelu, |
|
use_dyfuse=(use_dyfuse and in_channels == channels) if i == 0 else use_dyfuse, |
|
use_deform=(use_deform and in_channels == channels) if i == 0 else use_deform, |
|
) |
|
) |
|
|
|
self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower)) |
|
if cfg.MODEL.DYHEAD.COSINE_SCALE <= 0: |
|
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1) |
|
self.cls_logits_bias = None |
|
else: |
|
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1, bias=False) |
|
self.cls_logits_bias = nn.Parameter(torch.zeros(num_anchors * num_classes, requires_grad=True)) |
|
self.cosine_scale = nn.Parameter(torch.ones(1) * cfg.MODEL.DYHEAD.COSINE_SCALE) |
|
self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=1) |
|
self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=1) |
|
|
|
|
|
for modules in [self.cls_logits, self.bbox_pred, |
|
self.centerness]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
if hasattr(l, 'bias') and l.bias is not None: |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
|
|
prior_prob = cfg.MODEL.DYHEAD.PRIOR_PROB |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
if self.cls_logits_bias is None: |
|
torch.nn.init.constant_(self.cls_logits.bias, bias_value) |
|
else: |
|
torch.nn.init.constant_(self.cls_logits_bias, bias_value) |
|
|
|
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) |
|
|
|
def extract_feature(self, x): |
|
output = [] |
|
for i in range(len(self.dyhead_tower)): |
|
x = self.dyhead_tower[i](x) |
|
output.append(x) |
|
return output |
|
|
|
def forward(self, x): |
|
logits = [] |
|
bbox_reg = [] |
|
centerness = [] |
|
|
|
dyhead_tower = self.dyhead_tower(x) |
|
|
|
for l, feature in enumerate(x): |
|
if self.cls_logits_bias is None: |
|
logit = self.cls_logits(dyhead_tower[l]) |
|
else: |
|
|
|
|
|
x_norm = torch.norm(dyhead_tower[l], p=2, dim=1, keepdim=True).expand_as(dyhead_tower[l]) |
|
x_normalized = dyhead_tower[l].div(x_norm + 1e-5) |
|
|
|
temp_norm = ( |
|
torch.norm(self.cls_logits.weight.data, p=2, dim=1, keepdim=True) |
|
.expand_as(self.cls_logits.weight.data) |
|
) |
|
self.cls_logits.weight.data = self.cls_logits.weight.data.div( |
|
temp_norm + 1e-5 |
|
) |
|
cos_dist = self.cls_logits(x_normalized) |
|
logit = self.cosine_scale * cos_dist + self.cls_logits_bias.reshape(1, len(self.cls_logits_bias), 1, 1) |
|
logits.append(logit) |
|
|
|
bbox_pred = self.scales[l](self.bbox_pred(dyhead_tower[l])) |
|
bbox_reg.append(bbox_pred) |
|
|
|
centerness.append(self.centerness(dyhead_tower[l])) |
|
return logits, bbox_reg, centerness |
|
|
|
|
|
class DyHeadModule(torch.nn.Module): |
|
|
|
def __init__(self, cfg): |
|
super(DyHeadModule, self).__init__() |
|
self.cfg = cfg |
|
self.head = DyHead(cfg) |
|
box_coder = BoxCoder(cfg) |
|
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder) |
|
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True) |
|
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False) |
|
self.anchor_generator = make_anchor_generator_complex(cfg) |
|
|
|
def forward(self, images, features, targets=None): |
|
box_cls, box_regression, centerness = self.head(features) |
|
anchors = self.anchor_generator(images, features) |
|
|
|
if self.training: |
|
return self._forward_train(box_cls, box_regression, centerness, targets, anchors) |
|
else: |
|
return self._forward_test(box_cls, box_regression, centerness, anchors) |
|
|
|
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors): |
|
loss_box_cls, loss_box_reg, loss_centerness, _, _, _, _ = self.loss_evaluator( |
|
box_cls, box_regression, centerness, targets, anchors |
|
) |
|
losses = { |
|
"loss_cls": loss_box_cls, |
|
"loss_reg": loss_box_reg, |
|
"loss_centerness": loss_centerness |
|
} |
|
if self.cfg.MODEL.RPN_ONLY: |
|
return None, losses |
|
else: |
|
|
|
boxes = self.box_selector_train(box_regression, centerness, anchors, box_cls) |
|
train_boxes = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
for b, t in zip(boxes, targets): |
|
tb = t.copy_with_fields(["labels"]) |
|
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device)) |
|
train_boxes.append(cat_boxlist([b, tb])) |
|
return train_boxes, losses |
|
|
|
def _forward_test(self, box_cls, box_regression, centerness, anchors): |
|
boxes = self.box_selector_test(box_regression, centerness, anchors, box_cls) |
|
return boxes, {} |
|
|