|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.modeling import registry |
|
from maskrcnn_benchmark.layers import Scale, DFConv2d |
|
from .loss import make_fcos_loss_evaluator |
|
from .anchor_generator import make_center_anchor_generator |
|
from .inference import make_fcos_postprocessor |
|
|
|
|
|
@registry.RPN_HEADS.register("FCOSHead") |
|
class FCOSHead(torch.nn.Module): |
|
def __init__(self, cfg): |
|
|
|
super(FCOSHead, self).__init__() |
|
|
|
num_classes = cfg.MODEL.FCOS.NUM_CLASSES - 1 |
|
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
use_gn = cfg.MODEL.FCOS.USE_GN |
|
use_bn = cfg.MODEL.FCOS.USE_BN |
|
use_dcn_in_tower = cfg.MODEL.FCOS.USE_DFCONV |
|
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES |
|
self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS |
|
self.centerness_on_reg = cfg.MODEL.FCOS.CENTERNESS_ON_REG |
|
|
|
cls_tower = [] |
|
bbox_tower = [] |
|
for i in range(cfg.MODEL.FCOS.NUM_CONVS): |
|
if use_dcn_in_tower and \ |
|
i == cfg.MODEL.FCOS.NUM_CONVS - 1: |
|
conv_func = DFConv2d |
|
else: |
|
conv_func = nn.Conv2d |
|
|
|
cls_tower.append( |
|
conv_func( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True |
|
) |
|
) |
|
if use_gn: |
|
cls_tower.append(nn.GroupNorm(32, in_channels)) |
|
if use_bn: |
|
cls_tower.append(nn.BatchNorm2d(in_channels)) |
|
cls_tower.append(nn.ReLU()) |
|
|
|
bbox_tower.append( |
|
conv_func( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True |
|
) |
|
) |
|
if use_gn: |
|
bbox_tower.append(nn.GroupNorm(32, in_channels)) |
|
if use_bn: |
|
bbox_tower.append(nn.BatchNorm2d(in_channels)) |
|
bbox_tower.append(nn.ReLU()) |
|
|
|
self.add_module('cls_tower', nn.Sequential(*cls_tower)) |
|
self.add_module('bbox_tower', nn.Sequential(*bbox_tower)) |
|
self.cls_logits = nn.Conv2d( |
|
in_channels, num_classes, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
self.bbox_pred = nn.Conv2d( |
|
in_channels, 4, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
self.centerness = nn.Conv2d( |
|
in_channels, 1, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
|
|
|
|
for modules in [self.cls_tower, self.bbox_tower, |
|
self.cls_logits, self.bbox_pred, |
|
self.centerness]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
|
|
prior_prob = cfg.MODEL.FCOS.PRIOR_PROB |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
torch.nn.init.constant_(self.cls_logits.bias, bias_value) |
|
|
|
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) |
|
|
|
def forward(self, x): |
|
logits = [] |
|
bbox_reg = [] |
|
centerness = [] |
|
for l, feature in enumerate(x): |
|
cls_tower = self.cls_tower(feature) |
|
box_tower = self.bbox_tower(feature) |
|
|
|
logits.append(self.cls_logits(cls_tower)) |
|
if self.centerness_on_reg: |
|
centerness.append(self.centerness(box_tower)) |
|
else: |
|
centerness.append(self.centerness(cls_tower)) |
|
|
|
bbox_pred = self.scales[l](self.bbox_pred(box_tower)) |
|
if self.norm_reg_targets: |
|
bbox_pred = F.relu(bbox_pred) |
|
if self.training: |
|
bbox_reg.append(bbox_pred) |
|
else: |
|
bbox_reg.append(bbox_pred * self.fpn_strides[l]) |
|
else: |
|
bbox_reg.append(torch.exp(bbox_pred)) |
|
return logits, bbox_reg, centerness |
|
|
|
|
|
class FCOSModule(torch.nn.Module): |
|
""" |
|
Module for FCOS computation. Takes feature maps from the backbone and |
|
FCOS outputs and losses. Only Test on FPN now. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super(FCOSModule, self).__init__() |
|
|
|
head = FCOSHead(cfg) |
|
|
|
box_selector_train = make_fcos_postprocessor(cfg, is_train=True) |
|
box_selector_test = make_fcos_postprocessor(cfg, is_train=False) |
|
|
|
loss_evaluator = make_fcos_loss_evaluator(cfg) |
|
|
|
self.cfg = cfg |
|
self.head = head |
|
self.box_selector_train = box_selector_train |
|
self.box_selector_test = box_selector_test |
|
self.loss_evaluator = loss_evaluator |
|
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES |
|
if not cfg.MODEL.RPN_ONLY: |
|
self.anchor_generator = make_center_anchor_generator(cfg) |
|
|
|
|
|
def forward(self, images, features, targets=None): |
|
""" |
|
Arguments: |
|
images (ImageList): images for which we want to compute the predictions |
|
features (list[Tensor]): features computed from the images that are |
|
used for computing the predictions. Each tensor in the list |
|
correspond to different feature levels |
|
targets (list[BoxList): ground-truth boxes present in the image (optional) |
|
|
|
Returns: |
|
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per |
|
image. |
|
losses (dict[Tensor]): the losses for the model during training. During |
|
testing, it is an empty dict. |
|
""" |
|
box_cls, box_regression, centerness = self.head(features) |
|
locations = self.compute_locations(features) |
|
if self.training and targets is not None: |
|
return self._forward_train( |
|
locations, box_cls, box_regression, |
|
centerness, targets, images.image_sizes |
|
) |
|
else: |
|
return self._forward_test( |
|
locations, box_cls, box_regression, |
|
centerness, images.image_sizes |
|
) |
|
|
|
def _forward_train(self, locations, box_cls, box_regression, centerness, targets, image_sizes=None): |
|
loss_box_cls, loss_box_reg, loss_centerness = self.loss_evaluator( |
|
locations, box_cls, box_regression, centerness, targets |
|
) |
|
losses = { |
|
"loss_cls": loss_box_cls, |
|
"loss_reg": loss_box_reg, |
|
"loss_centerness": loss_centerness |
|
} |
|
if self.cfg.MODEL.RPN_ONLY: |
|
return None, losses |
|
else: |
|
boxes = self.box_selector_train( |
|
locations, box_cls, box_regression, |
|
centerness, image_sizes |
|
) |
|
proposals = self.anchor_generator(boxes, image_sizes, centerness) |
|
return proposals, losses |
|
|
|
def _forward_test(self, locations, box_cls, box_regression, centerness, image_sizes): |
|
boxes = self.box_selector_test( |
|
locations, box_cls, box_regression, |
|
centerness, image_sizes |
|
) |
|
if not self.cfg.MODEL.RPN_ONLY: |
|
boxes = self.anchor_generator(boxes, image_sizes, centerness) |
|
return boxes, {} |
|
|
|
def compute_locations(self, features): |
|
locations = [] |
|
for level, feature in enumerate(features): |
|
h, w = feature.size()[-2:] |
|
locations_per_level = self.compute_locations_per_level( |
|
h, w, self.fpn_strides[level], |
|
feature.device |
|
) |
|
locations.append(locations_per_level) |
|
return locations |
|
|
|
def compute_locations_per_level(self, h, w, stride, device): |
|
shifts_x = torch.arange( |
|
0, w * stride, step=stride, |
|
dtype=torch.float32, device=device |
|
) |
|
shifts_y = torch.arange( |
|
0, h * stride, step=stride, |
|
dtype=torch.float32, device=device |
|
) |
|
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) |
|
shift_x = shift_x.reshape(-1) |
|
shift_y = shift_y.reshape(-1) |
|
locations = torch.stack((shift_x, shift_y), dim=1) + stride // 2 |
|
return locations |
|
|
|
|
|
|
|
|
|
|