|
|
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.modeling import registry |
|
from maskrcnn_benchmark.modeling.box_coder import BoxCoder |
|
from .loss import make_focal_loss_evaluator |
|
from .anchor_generator import make_anchor_generator_complex |
|
from .inference import make_retina_postprocessor |
|
|
|
|
|
@registry.RPN_HEADS.register("RetinaNetHead") |
|
class RetinaNetHead(torch.nn.Module): |
|
""" |
|
Adds a RetinNet head with classification and regression heads |
|
""" |
|
|
|
def __init__(self, cfg): |
|
""" |
|
Arguments: |
|
in_channels (int): number of channels of the input feature |
|
num_anchors (int): number of anchors to be predicted |
|
""" |
|
super(RetinaNetHead, self).__init__() |
|
|
|
num_classes = cfg.MODEL.RETINANET.NUM_CLASSES - 1 |
|
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
if cfg.MODEL.RPN.USE_FPN: |
|
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE |
|
else: |
|
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * len(cfg.MODEL.RPN.ANCHOR_SIZES) |
|
|
|
cls_tower = [] |
|
bbox_tower = [] |
|
for i in range(cfg.MODEL.RETINANET.NUM_CONVS): |
|
cls_tower.append( |
|
nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1 |
|
) |
|
) |
|
cls_tower.append(nn.ReLU()) |
|
bbox_tower.append( |
|
nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1 |
|
) |
|
) |
|
bbox_tower.append(nn.ReLU()) |
|
|
|
self.add_module('cls_tower', nn.Sequential(*cls_tower)) |
|
self.add_module('bbox_tower', nn.Sequential(*bbox_tower)) |
|
self.cls_logits = nn.Conv2d( |
|
in_channels, num_anchors * num_classes, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
self.bbox_pred = nn.Conv2d( |
|
in_channels, num_anchors * 4, kernel_size=3, stride=1, |
|
padding=1 |
|
) |
|
|
|
|
|
for modules in [self.cls_tower, self.bbox_tower, self.cls_logits, |
|
self.bbox_pred]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
|
|
|
|
prior_prob = cfg.MODEL.RETINANET.PRIOR_PROB |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
torch.nn.init.constant_(self.cls_logits.bias, bias_value) |
|
|
|
def forward(self, x): |
|
logits = [] |
|
bbox_reg = [] |
|
for feature in x: |
|
logits.append(self.cls_logits(self.cls_tower(feature))) |
|
bbox_reg.append(self.bbox_pred(self.bbox_tower(feature))) |
|
return logits, bbox_reg |
|
|
|
|
|
class RetinaNetModule(torch.nn.Module): |
|
""" |
|
Module for RetinaNet computation. Takes feature maps from the backbone and |
|
RetinaNet outputs and losses. Only Test on FPN now. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super(RetinaNetModule, self).__init__() |
|
|
|
self.cfg = cfg.clone() |
|
|
|
anchor_generator = make_anchor_generator_complex(cfg) |
|
head = RetinaNetHead(cfg) |
|
|
|
box_coder = BoxCoder(weights=(10., 10., 5., 5.)) |
|
|
|
box_selector_test = make_retina_postprocessor(cfg, box_coder, is_train=False) |
|
|
|
loss_evaluator = make_focal_loss_evaluator(cfg, box_coder) |
|
|
|
self.anchor_generator = anchor_generator |
|
self.head = head |
|
self.box_selector_test = box_selector_test |
|
self.loss_evaluator = loss_evaluator |
|
|
|
def forward(self, images, features, targets=None): |
|
""" |
|
Arguments: |
|
images (ImageList): images for which we want to compute the predictions |
|
features (list[Tensor]): features computed from the images that are |
|
used for computing the predictions. Each tensor in the list |
|
correspond to different feature levels |
|
targets (list[BoxList): ground-truth boxes present in the image (optional) |
|
|
|
Returns: |
|
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per |
|
image. |
|
losses (dict[Tensor]): the losses for the model during training. During |
|
testing, it is an empty dict. |
|
""" |
|
box_cls, box_regression = self.head(features) |
|
anchors = self.anchor_generator(images, features) |
|
|
|
if self.training: |
|
return self._forward_train(anchors, box_cls, box_regression, targets) |
|
else: |
|
return self._forward_test(anchors, box_cls, box_regression) |
|
|
|
def _forward_train(self, anchors, box_cls, box_regression, targets): |
|
|
|
loss_box_cls, loss_box_reg = self.loss_evaluator( |
|
anchors, box_cls, box_regression, targets |
|
) |
|
losses = { |
|
"loss_retina_cls": loss_box_cls, |
|
"loss_retina_reg": loss_box_reg, |
|
} |
|
return anchors, losses |
|
|
|
def _forward_test(self, anchors, box_cls, box_regression): |
|
boxes = self.box_selector_test(anchors, box_cls, box_regression) |
|
return boxes, {} |
|
|
|
|
|
|