|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from maskrcnn_benchmark.modeling import registry |
|
from maskrcnn_benchmark.modeling.box_coder import BoxCoder |
|
from .loss import make_rpn_loss_evaluator |
|
from .anchor_generator import make_anchor_generator |
|
from .inference import make_rpn_postprocessor |
|
|
|
|
|
@registry.RPN_HEADS.register("SimpleRPNHead") |
|
class mRPNHead(nn.Module): |
|
""" |
|
Adds a simple RPN Head with classification and regression heads |
|
""" |
|
|
|
def __init__(self, cfg, in_channels, num_anchors): |
|
""" |
|
Arguments: |
|
cfg : config |
|
in_channels (int): number of channels of the input feature |
|
num_anchors (int): number of anchors to be predicted |
|
""" |
|
super(mRPNHead, self).__init__() |
|
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) |
|
self.bbox_pred = nn.Conv2d( |
|
in_channels, num_anchors * 4, kernel_size=1, stride=1 |
|
) |
|
|
|
for l in [self.cls_logits, self.bbox_pred]: |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
def forward(self, x): |
|
logits = [] |
|
bbox_reg = [] |
|
for feature in x: |
|
t = F.relu(feature) |
|
logits.append(self.cls_logits(t)) |
|
bbox_reg.append(self.bbox_pred(t)) |
|
return logits, bbox_reg |
|
|
|
|
|
@registry.RPN_HEADS.register("SingleConvRPNHead") |
|
class RPNHead(nn.Module): |
|
""" |
|
Adds a simple RPN Head with classification and regression heads |
|
""" |
|
|
|
def __init__(self, cfg, in_channels, num_anchors): |
|
""" |
|
Arguments: |
|
cfg : config |
|
in_channels (int): number of channels of the input feature |
|
num_anchors (int): number of anchors to be predicted |
|
""" |
|
super(RPNHead, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) |
|
self.bbox_pred = nn.Conv2d( |
|
in_channels, num_anchors * 4, kernel_size=1, stride=1 |
|
) |
|
|
|
for l in [self.conv, self.cls_logits, self.bbox_pred]: |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
def forward(self, x): |
|
logits = [] |
|
bbox_reg = [] |
|
for feature in x: |
|
t = F.relu(self.conv(feature)) |
|
logits.append(self.cls_logits(t)) |
|
bbox_reg.append(self.bbox_pred(t)) |
|
return logits, bbox_reg |
|
|
|
|
|
class RPNModule(torch.nn.Module): |
|
""" |
|
Module for RPN computation. Takes feature maps from the backbone and RPN |
|
proposals and losses. Works for both FPN and non-FPN. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super(RPNModule, self).__init__() |
|
|
|
self.cfg = cfg.clone() |
|
|
|
anchor_generator = make_anchor_generator(cfg) |
|
|
|
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD] |
|
head = rpn_head( |
|
cfg, in_channels, anchor_generator.num_anchors_per_location()[0] |
|
) |
|
|
|
rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) |
|
|
|
box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True) |
|
box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False) |
|
|
|
loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder) |
|
|
|
self.anchor_generator = anchor_generator |
|
self.head = head |
|
self.box_selector_train = box_selector_train |
|
self.box_selector_test = box_selector_test |
|
self.loss_evaluator = loss_evaluator |
|
|
|
def forward(self, images, features, targets=None): |
|
""" |
|
Arguments: |
|
images (ImageList): images for which we want to compute the predictions |
|
features (list[Tensor]): features computed from the images that are |
|
used for computing the predictions. Each tensor in the list |
|
correspond to different feature levels |
|
targets (list[BoxList): ground-truth boxes present in the image (optional) |
|
|
|
Returns: |
|
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per |
|
image. |
|
losses (dict[Tensor]): the losses for the model during training. During |
|
testing, it is an empty dict. |
|
""" |
|
objectness, rpn_box_regression = self.head(features) |
|
anchors = self.anchor_generator(images, features) |
|
|
|
if self.training: |
|
return self._forward_train(anchors, objectness, rpn_box_regression, targets) |
|
else: |
|
return self._forward_test(anchors, objectness, rpn_box_regression) |
|
|
|
def _forward_train(self, anchors, objectness, rpn_box_regression, targets): |
|
if self.cfg.MODEL.RPN_ONLY: |
|
|
|
|
|
|
|
|
|
boxes = anchors |
|
else: |
|
|
|
|
|
with torch.no_grad(): |
|
boxes = self.box_selector_train( |
|
anchors, objectness, rpn_box_regression, targets |
|
) |
|
loss_objectness, loss_rpn_box_reg = self.loss_evaluator( |
|
anchors, objectness, rpn_box_regression, targets |
|
) |
|
losses = { |
|
"loss_objectness": loss_objectness, |
|
"loss_rpn_box_reg": loss_rpn_box_reg, |
|
} |
|
return boxes, losses |
|
|
|
def _forward_test(self, anchors, objectness, rpn_box_regression): |
|
boxes = self.box_selector_test(anchors, objectness, rpn_box_regression) |
|
if self.cfg.MODEL.RPN_ONLY: |
|
|
|
|
|
|
|
|
|
inds = [ |
|
box.get_field("objectness").sort(descending=True)[1] for box in boxes |
|
] |
|
boxes = [box[ind] for box, ind in zip(boxes, inds)] |
|
return boxes, {} |