|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from collections import defaultdict |
|
|
|
from .inference import make_atss_postprocessor |
|
from .loss import make_atss_loss_evaluator |
|
from .anchor_generator import make_anchor_generator_complex |
|
|
|
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist |
|
from maskrcnn_benchmark.layers import Scale, DYReLU, SELayer, ModulatedDeformConv |
|
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d |
|
from maskrcnn_benchmark.modeling.backbone.fbnet import * |
|
from maskrcnn_benchmark.engine.inference import create_positive_map_label_to_token_from_positive_map |
|
from ..utils import cat, concat_box_prediction_layers, permute_and_flatten |
|
|
|
from maskrcnn_benchmark.utils.fuse_helper import FeatureResizer, func_attention, _make_mlp, _make_conv, _make_coord, \ |
|
BiAttentionBlock, AttentionT2I, BiAttentionBlockForCheckpoint, BertLMPredictionHead |
|
from transformers.models.bert.modeling_bert import BertConfig, BertAttention, BertIntermediate, BertOutput, \ |
|
BertPreTrainedModel |
|
from transformers.modeling_utils import apply_chunking_to_forward |
|
import torch.utils.checkpoint as checkpoint |
|
import pdb |
|
|
|
from maskrcnn_benchmark.modeling.language_backbone.clip_model import QuickGELU, LayerNorm, DropPath |
|
from timm.models.layers import DropPath, trunc_normal_ |
|
|
|
class h_sigmoid(nn.Module): |
|
def __init__(self, inplace=True, h_max=1): |
|
super(h_sigmoid, self).__init__() |
|
self.relu = nn.ReLU6(inplace=inplace) |
|
self.h_max = h_max |
|
|
|
def forward(self, x): |
|
return self.relu(x + 3) * self.h_max / 6 |
|
|
|
|
|
class BoxCoder(object): |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
|
|
def encode(self, gt_boxes, anchors): |
|
TO_REMOVE = 1 |
|
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE |
|
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE |
|
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 |
|
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 |
|
|
|
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE |
|
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE |
|
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2 |
|
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2 |
|
|
|
wx, wy, ww, wh = (10., 10., 5., 5.) |
|
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths |
|
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights |
|
targets_dw = ww * torch.log(gt_widths / ex_widths) |
|
targets_dh = wh * torch.log(gt_heights / ex_heights) |
|
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) |
|
|
|
return targets |
|
|
|
def decode(self, preds, anchors): |
|
anchors = anchors.to(preds.dtype) |
|
|
|
TO_REMOVE = 1 |
|
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE |
|
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE |
|
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 |
|
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 |
|
|
|
wx, wy, ww, wh = (10., 10., 5., 5.) |
|
dx = preds[:, 0::4] / wx |
|
dy = preds[:, 1::4] / wy |
|
dw = preds[:, 2::4] / ww |
|
dh = preds[:, 3::4] / wh |
|
|
|
|
|
dw = torch.clamp(dw, max=math.log(1000. / 16)) |
|
dh = torch.clamp(dh, max=math.log(1000. / 16)) |
|
|
|
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] |
|
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] |
|
pred_w = torch.exp(dw) * widths[:, None] |
|
pred_h = torch.exp(dh) * heights[:, None] |
|
|
|
pred_boxes = torch.zeros_like(preds) |
|
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1) |
|
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1) |
|
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1) |
|
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1) |
|
|
|
return pred_boxes |
|
|
|
|
|
class Conv3x3Norm(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
groups=1, |
|
deformable=False, |
|
bn_type=None): |
|
super(Conv3x3Norm, self).__init__() |
|
|
|
if deformable: |
|
self.conv = ModulatedDeformConv(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, |
|
groups=groups) |
|
else: |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups) |
|
|
|
if isinstance(bn_type, (list, tuple)): |
|
assert len(bn_type) == 2 |
|
assert bn_type[0] == "gn" |
|
gn_group = bn_type[1] |
|
bn_type = bn_type[0] |
|
|
|
if bn_type == "bn": |
|
bn_op = nn.BatchNorm2d(out_channels) |
|
elif bn_type == "sbn": |
|
bn_op = nn.SyncBatchNorm(out_channels) |
|
elif bn_type == "nsbn": |
|
bn_op = NaiveSyncBatchNorm2d(out_channels) |
|
elif bn_type == "gn": |
|
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=out_channels) |
|
elif bn_type == "af": |
|
bn_op = FrozenBatchNorm2d(out_channels) |
|
if bn_type is not None: |
|
self.bn = bn_op |
|
else: |
|
self.bn = None |
|
|
|
def forward(self, input, **kwargs): |
|
x = self.conv(input, **kwargs) |
|
if self.bn: |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class DyConv(torch.nn.Module): |
|
def __init__(self, |
|
in_channels=256, |
|
out_channels=256, |
|
conv_func=nn.Conv2d, |
|
use_dyfuse=True, |
|
use_dyrelu=False, |
|
use_deform=False |
|
): |
|
super(DyConv, self).__init__() |
|
|
|
self.DyConv = nn.ModuleList() |
|
self.DyConv.append(conv_func(in_channels, out_channels, 1)) |
|
self.DyConv.append(conv_func(in_channels, out_channels, 1)) |
|
self.DyConv.append(conv_func(in_channels, out_channels, 2)) |
|
|
|
if use_dyfuse: |
|
self.AttnConv = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, 1, kernel_size=1), |
|
nn.ReLU(inplace=True)) |
|
self.h_sigmoid = h_sigmoid() |
|
else: |
|
self.AttnConv = None |
|
|
|
if use_dyrelu: |
|
self.relu = DYReLU(in_channels, out_channels) |
|
else: |
|
self.relu = nn.ReLU() |
|
|
|
if use_deform: |
|
self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1) |
|
else: |
|
self.offset = None |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
for m in self.DyConv.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight.data, 0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
if self.AttnConv is not None: |
|
for m in self.AttnConv.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight.data, 0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, inputs): |
|
visual_feats = inputs["visual"] |
|
language_dict_features = inputs["lang"] |
|
|
|
next_x = [] |
|
for level, feature in enumerate(visual_feats): |
|
|
|
conv_args = dict() |
|
if self.offset is not None: |
|
offset_mask = self.offset(feature) |
|
offset = offset_mask[:, :18, :, :] |
|
mask = offset_mask[:, 18:, :, :].sigmoid() |
|
conv_args = dict(offset=offset, mask=mask) |
|
|
|
temp_fea = [self.DyConv[1](feature, **conv_args)] |
|
|
|
if level > 0: |
|
temp_fea.append(self.DyConv[2](visual_feats[level - 1], **conv_args)) |
|
if level < len(visual_feats) - 1: |
|
temp_fea.append(F.upsample_bilinear(self.DyConv[0](visual_feats[level + 1], **conv_args), |
|
size=[feature.size(2), feature.size(3)])) |
|
mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False) |
|
|
|
if self.AttnConv is not None: |
|
attn_fea = [] |
|
res_fea = [] |
|
for fea in temp_fea: |
|
res_fea.append(fea) |
|
attn_fea.append(self.AttnConv(fea)) |
|
|
|
res_fea = torch.stack(res_fea) |
|
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea)) |
|
|
|
mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False) |
|
|
|
next_x.append(mean_fea) |
|
|
|
next_x = [self.relu(item) for item in next_x] |
|
|
|
features_dict = {"visual": next_x, |
|
"lang": language_dict_features} |
|
|
|
return features_dict |
|
|
|
|
|
class BertEncoderLayer(BertPreTrainedModel): |
|
def __init__(self, config, clamp_min_for_underflow = False, clamp_max_for_overflow = False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
|
|
from maskrcnn_benchmark.modeling.rpn.modeling_bert import BertAttention, BertIntermediate, BertOutput |
|
|
|
self.attention = BertAttention(config, clamp_min_for_underflow, clamp_max_for_overflow) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward(self, inputs): |
|
language_dict_features = inputs["lang"] |
|
hidden_states = language_dict_features["hidden"] |
|
attention_mask = language_dict_features["masks"] |
|
|
|
device = hidden_states.device |
|
input_shape = hidden_states.size()[:-1] |
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
extended_attention_mask, |
|
None, |
|
output_attentions=False, |
|
past_key_value=None, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
hidden_states = outputs[0] |
|
|
|
language_dict_features["hidden"] = hidden_states |
|
|
|
features_dict = {"visual": inputs["visual"], |
|
"lang": language_dict_features |
|
} |
|
|
|
return features_dict |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class CLIPTransformerLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
d_model = self.config.MODEL.CLIP.WIDTH |
|
n_head = self.config.MODEL.CLIP.HEADS |
|
drop_path = self.config.MODEL.CLIP.DROP_PATH |
|
self.context_length = self.config.MODEL.CLIP.CONTEXT_LENGTH |
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Linear, nn.Conv2d)): |
|
trunc_normal_(m.weight, std=0.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)): |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None): |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \ |
|
if self.attn_mask is not None else None |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0] |
|
|
|
def forward(self, inputs): |
|
language_dict_features = inputs["lang"] |
|
x = language_dict_features["hidden"] |
|
mask = language_dict_features["masks"] |
|
|
|
key_padding_mask = (1.0 - mask).to(torch.bool) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask)) |
|
x = x + self.drop_path(self.mlp(self.ln_2(x))) |
|
x = x.permute(1, 0, 2) |
|
|
|
language_dict_features["hidden"] = x |
|
features_dict = {"visual": inputs["visual"], |
|
"lang": language_dict_features |
|
} |
|
return features_dict |
|
|
|
|
|
class DummyLayer(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, inputs): |
|
return inputs |
|
|
|
|
|
class VLFuse(torch.nn.Module): |
|
""" |
|
Early Fusion Module |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super(VLFuse, self).__init__() |
|
self.init_configs(cfg) |
|
self.cfg = cfg |
|
|
|
self.use_checkpoint = False |
|
if hasattr(cfg.MODEL.DYHEAD, 'USE_CHECKPOINT'): |
|
self.use_checkpoint = cfg.MODEL.DYHEAD.USE_CHECKPOINT |
|
self.dummy_tensor = torch.ones(1, dtype=torch.float32, requires_grad=True) |
|
|
|
|
|
print("EARLY FUSION ON, USING {}".format(cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE)) |
|
if cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-S": |
|
|
|
|
|
self.t2i_attn = AttentionT2I(q_dim=self.joint_embedding_size, |
|
k_dim=self.lang_dim, |
|
embed_dim=self.embed_dim, |
|
num_heads=self.n_head, |
|
hidden_dim=self.t2i_hidden_dim, |
|
dropout=0.1, |
|
drop_path=.0, |
|
init_values=1.0 / cfg.MODEL.DYHEAD.NUM_CONVS, |
|
mode="t2i", |
|
use_layer_scale=cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_LAYER_SCALE, |
|
clamp_min_for_underflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MIN_FOR_UNDERFLOW, |
|
clamp_max_for_overflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MAX_FOR_OVERFLOW |
|
) |
|
|
|
elif cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-B": |
|
|
|
self.b_attn = BiAttentionBlockForCheckpoint(v_dim=self.joint_embedding_size, |
|
l_dim=self.lang_dim, |
|
embed_dim=self.embed_dim, |
|
num_heads=self.n_head, |
|
hidden_dim=self.i2t_hidden_dim, |
|
dropout=0.1, |
|
drop_path=.0, |
|
init_values=1.0 / cfg.MODEL.DYHEAD.NUM_CONVS, |
|
cfg=cfg |
|
) |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL and self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: |
|
self.shrink_lang = FeatureResizer(self.lang_dim * 5, |
|
self.lang_dim, 0.1) |
|
|
|
|
|
elif cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "SCAN": |
|
|
|
self.mapping_lang = _make_mlp(self.lang_dim, |
|
self.joint_embedding_size, |
|
self.joint_embedding_dropout) |
|
self.joint_fusion = nn.ModuleList([_make_conv(self.joint_inp_dim, self.joint_out_dim, 1) \ |
|
for _ in range(5)]) |
|
|
|
elif cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "FILM": |
|
|
|
self.mapping_lang = _make_mlp(self.lang_dim, |
|
self.joint_embedding_size, |
|
self.joint_embedding_dropout) |
|
self.gamma = nn.ModuleList(nn.Linear(self.joint_embedding_size, self.joint_inp_dim) for _ in range(5)) |
|
self.beta = nn.ModuleList(nn.Linear(self.joint_embedding_size, self.joint_inp_dim) for _ in range(5)) |
|
|
|
self.joint_fusion = nn.ModuleList([_make_conv(self.joint_inp_dim, self.joint_out_dim, 1) \ |
|
for _ in range(5)]) |
|
|
|
else: |
|
print("NO FUSION INVOLVED.") |
|
|
|
def init_configs(self, cfg): |
|
|
|
self.lang_model = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE |
|
self.joint_embedding_size = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_SIZE |
|
self.joint_embedding_dropout = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_DROPOUT |
|
self.joint_mlp_layers = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_MLP_LAYERS |
|
|
|
self.max_query_len = cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN |
|
self.n_layers = cfg.MODEL.LANGUAGE_BACKBONE.N_LAYERS |
|
self.coord_dim = 8 |
|
self.joint_inp_dim = self.coord_dim + self.joint_embedding_size |
|
self.joint_out_dim = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_OUT_SIZE |
|
|
|
|
|
self.n_head = 8 |
|
self.embed_dim = 2048 |
|
self.t2i_hidden_dim = 1024 |
|
self.i2t_hidden_dim = 3072 |
|
|
|
if self.lang_model in ["bert-base-uncased", "roberta-base", "clip"]: |
|
self.lang_dim = cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM |
|
else: |
|
self.lang_dim = 1024 |
|
|
|
def forward(self, x): |
|
visual_features = x["visual"] |
|
language_dict_features = x["lang"] |
|
|
|
batch_size = visual_features[0].shape[0] |
|
device = visual_features[0].device |
|
|
|
fused_visual_features = None |
|
fused_language_dict_features = None |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-S": |
|
language_feature = language_dict_features['hidden'] |
|
mask = language_dict_features['masks'] |
|
|
|
if self.use_checkpoint: |
|
q0, q1, q2, q3, q4 = checkpoint.checkpoint( |
|
self.t2i_attn, |
|
visual_features[0], visual_features[1], |
|
visual_features[2], visual_features[3], |
|
visual_features[4], |
|
language_feature, language_feature, |
|
mask, |
|
self.dummy_tensor |
|
) |
|
else: |
|
q0, q1, q2, q3, q4 = self.t2i_attn( |
|
visual_features[0], visual_features[1], |
|
visual_features[2], visual_features[3], |
|
visual_features[4], |
|
language_feature, language_feature, |
|
attention_mask=mask |
|
) |
|
|
|
fused_visual_features = [q0, q1, q2, q3, q4] |
|
fused_language_dict_features = language_dict_features |
|
|
|
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-B": |
|
if self.use_checkpoint: |
|
q0, q1, q2, q3, q4, l0, l1, l2, l3, l4 = checkpoint.checkpoint(self.b_attn, |
|
visual_features[0], visual_features[1], |
|
visual_features[2], visual_features[3], |
|
visual_features[4], |
|
language_dict_features['hidden'], |
|
language_dict_features['masks'], |
|
self.dummy_tensor |
|
) |
|
else: |
|
q0, q1, q2, q3, q4, l0, l1, l2, l3, l4 = self.b_attn( |
|
visual_features[0], visual_features[1], |
|
visual_features[2], visual_features[3], |
|
visual_features[4], |
|
language_dict_features['hidden'], |
|
language_dict_features['masks'], |
|
self.dummy_tensor |
|
) |
|
|
|
fused_visual_features = [q0, q1, q2, q3, q4] |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL and self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: |
|
language_features = self.shrink_lang(torch.cat([l0, l1, l2, l3, l4], dim = -1)) |
|
else: |
|
language_features = l0 |
|
|
|
language_dict_features['hidden'] = language_features |
|
fused_language_dict_features = language_dict_features |
|
|
|
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "SCAN": |
|
|
|
language_feature = language_dict_features['aggregate'] |
|
language_feature = self.mapping_lang(language_feature) |
|
visu_feat = [] |
|
for ii, feat in enumerate(visual_features): |
|
attn_feat = func_attention(feat, language_feature, smooth=1, raw_feature_norm="softmax") |
|
visu_feat.append(attn_feat) |
|
|
|
fused_visual_features = [fusion(feat) for feat, fusion in zip(visu_feat, self.joint_fusion)] |
|
fused_language_dict_features = language_dict_features |
|
|
|
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "FILM": |
|
|
|
|
|
coord_feats = [_make_coord(batch_size, x.shape[2], x.shape[3]) for x in visual_features] |
|
|
|
|
|
|
|
language_feature = language_dict_features['aggregate'] |
|
language_feature = self.mapping_lang(language_feature) |
|
|
|
|
|
gamma = [F.tanh(gamma(language_feature)) for gamma in self.gamma] |
|
beta = [F.tanh(beta(language_feature)) for beta in self.beta] |
|
|
|
visu_feat = [] |
|
for ii, feat in enumerate(visual_features): |
|
coord_feat = coord_feats[ii].to(device) |
|
feat = torch.cat([feat, coord_feat], dim=1) |
|
b = beta[ii].view(batch_size, -1, 1, 1).expand_as(feat) |
|
g = gamma[ii].view(batch_size, -1, 1, 1).expand_as(feat) |
|
feat = F.relu(g * feat + b) |
|
visu_feat.append(feat) |
|
|
|
fused_visual_features = [fusion(feat) for feat, fusion in zip(visu_feat, self.joint_fusion)] |
|
fused_language_dict_features = language_dict_features |
|
|
|
else: |
|
fused_visual_features = visual_features |
|
fused_language_dict_features = language_dict_features |
|
|
|
features_dict = {"visual": fused_visual_features, |
|
"lang": fused_language_dict_features} |
|
|
|
return features_dict |
|
|
|
|
|
class VLDyHead(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(VLDyHead, self).__init__() |
|
self.cfg = cfg |
|
|
|
if cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "bert-base-uncased": |
|
lang_cfg = BertConfig.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE) |
|
elif cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "clip": |
|
lang_cfg = cfg |
|
else: |
|
lang_cfg = None |
|
raise NotImplementedError |
|
|
|
num_classes = cfg.MODEL.DYHEAD.NUM_CLASSES - 1 |
|
num_tokens = cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN |
|
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE |
|
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS |
|
channels = cfg.MODEL.DYHEAD.CHANNELS |
|
|
|
if cfg.MODEL.DYHEAD.USE_GN: |
|
bn_type = ['gn', cfg.MODEL.GROUP_NORM.NUM_GROUPS] |
|
elif cfg.MODEL.DYHEAD.USE_NSYNCBN: |
|
bn_type = 'nsbn' |
|
elif cfg.MODEL.DYHEAD.USE_SYNCBN: |
|
bn_type = 'sbn' |
|
else: |
|
bn_type = None |
|
|
|
use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU |
|
use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE |
|
use_deform = cfg.MODEL.DYHEAD.USE_DFCONV |
|
|
|
if cfg.MODEL.DYHEAD.CONV_FUNC: |
|
conv_func = lambda i, o, s: eval(cfg.MODEL.DYHEAD.CONV_FUNC)(i, o, s, bn_type=bn_type) |
|
else: |
|
conv_func = lambda i, o, s: Conv3x3Norm(i, o, s, deformable=use_deform, bn_type=bn_type) |
|
|
|
dyhead_tower = [] |
|
for i in range(cfg.MODEL.DYHEAD.NUM_CONVS): |
|
if cfg.MODEL.DYHEAD.FUSE_CONFIG.EARLY_FUSE_ON: |
|
|
|
dyhead_tower.append( |
|
VLFuse(cfg) |
|
) |
|
|
|
if i < cfg.MODEL.DYHEAD.NUM_CONVS - 1 or cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_FUSED_FEATURES_DOT_PRODUCT: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "bert-base-uncased": |
|
dyhead_tower.append( |
|
BertEncoderLayer( |
|
lang_cfg, |
|
clamp_min_for_underflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MIN_FOR_UNDERFLOW, |
|
clamp_max_for_overflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MAX_FOR_OVERFLOW) |
|
) |
|
elif cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "clip": |
|
dyhead_tower.append( |
|
CLIPTransformerLayer(lang_cfg) |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
else: |
|
dyhead_tower.append( |
|
DummyLayer() |
|
) |
|
|
|
|
|
dyhead_tower.append( |
|
DyConv( |
|
in_channels if i == 0 else channels, |
|
channels, |
|
conv_func=conv_func, |
|
use_dyrelu=(use_dyrelu and in_channels == channels) if i == 0 else use_dyrelu, |
|
use_dyfuse=(use_dyfuse and in_channels == channels) if i == 0 else use_dyfuse, |
|
use_deform=(use_deform and in_channels == channels) if i == 0 else use_deform, |
|
) |
|
) |
|
|
|
self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower)) |
|
|
|
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1) |
|
self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=1) |
|
self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=1) |
|
|
|
|
|
prior_prob = cfg.MODEL.DYHEAD.PRIOR_PROB |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
|
|
log_scale = self.cfg.MODEL.DYHEAD.LOG_SCALE |
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: |
|
self.token_logits = nn.Conv2d(channels, num_anchors * num_tokens, kernel_size=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS == False |
|
contrastive_hdim = cfg.MODEL.DYHEAD.FUSE_CONFIG.CONTRASTIVE_HIDDEN_DIM |
|
self.contrastive_align_projection_image = nn.Conv2d(channels, num_anchors * contrastive_hdim, kernel_size=1) |
|
self.contrastive_align_projection_text = nn.Linear(channels, contrastive_hdim, bias=True) |
|
self.log_scale = nn.Parameter(torch.Tensor([log_scale]), requires_grad=True) |
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS == False |
|
self.dot_product_projection_image = nn.Identity() |
|
self.dot_product_projection_text = nn.Linear(self.cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM, |
|
num_anchors * channels, bias=True) |
|
self.log_scale = nn.Parameter(torch.Tensor([log_scale]), requires_grad=True) |
|
|
|
|
|
self.bias_lang = nn.Parameter(torch.zeros(self.cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM), requires_grad=True) |
|
self.bias0 = nn.Parameter(torch.Tensor([bias_value]), requires_grad=True) |
|
|
|
|
|
for modules in [self.cls_logits, self.bbox_pred, |
|
self.centerness]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) |
|
|
|
torch.nn.init.constant_(self.cls_logits.bias, bias_value) |
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: |
|
for modules in [self.token_logits]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
torch.nn.init.constant_(self.token_logits.bias, bias_value) |
|
|
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
for modules in [self.contrastive_align_projection_image]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, 0) |
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
for modules in [self.dot_product_projection_image]: |
|
for l in modules.modules(): |
|
if isinstance(l, nn.Conv2d): |
|
torch.nn.init.normal_(l.weight, std=0.01) |
|
torch.nn.init.constant_(l.bias, bias_value) |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: |
|
if cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "clip": |
|
lang_cfg = BertConfig.from_pretrained("bert-base-uncased") |
|
lang_cfg.hidden_size = cfg.MODEL.CLIP.WIDTH |
|
lang_cfg.vocab_size = cfg.MODEL.CLIP.VOCAB_SIZE |
|
self.mlm_head = BertLMPredictionHead( |
|
lang_cfg |
|
) |
|
|
|
def forward(self, x, language_dict_features=None, embedding=None, swint_feature_c4=None): |
|
logits = [] |
|
bbox_reg = [] |
|
centerness = [] |
|
|
|
feat_inputs = {"visual": x, |
|
"lang": language_dict_features} |
|
|
|
dyhead_tower = self.dyhead_tower(feat_inputs) |
|
|
|
|
|
t_logits = None |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: |
|
t_logits = [] |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_FUSED_FEATURES_DOT_PRODUCT: |
|
embedding = dyhead_tower["lang"]["hidden"] |
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: |
|
mlm_logits = self.mlm_head(embedding) |
|
else: |
|
mlm_logits = None |
|
|
|
|
|
contrastive_logits = None |
|
proj_tokens = None |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
contrastive_logits = [] |
|
|
|
proj_tokens = F.normalize( |
|
self.contrastive_align_projection_text(embedding), p=2, dim=-1 |
|
) |
|
|
|
|
|
dot_product_logits = None |
|
dot_product_proj_tokens = None |
|
dot_product_proj_tokens_bias = None |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
dot_product_logits = [] |
|
|
|
embedding = F.normalize(embedding, p=2, dim=-1) |
|
dot_product_proj_tokens = self.dot_product_projection_text(embedding / 2.0) |
|
|
|
|
|
|
|
dot_product_proj_tokens_bias = torch.matmul(embedding, self.bias_lang) + self.bias0 |
|
|
|
|
|
shallow_img_emb_feats = None |
|
shallow_text_emb = None |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS \ |
|
or self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS: |
|
shallow_img_emb_feats = [] |
|
shallow_text_emb = embedding |
|
|
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS: |
|
for b, feature in enumerate(swint_feature_c4): |
|
|
|
|
|
shallow_img_emb_feats.append(feature) |
|
|
|
fused_visual_features = None |
|
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES: |
|
fused_visual_features = [] |
|
|
|
|
|
for l, feature in enumerate(x): |
|
logits.append(self.cls_logits(dyhead_tower["visual"][l])) |
|
|
|
bbox_pred = self.scales[l](self.bbox_pred(dyhead_tower["visual"][l])) |
|
bbox_reg.append(bbox_pred) |
|
|
|
centerness.append(self.centerness(dyhead_tower["visual"][l])) |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: |
|
t_logits.append(self.token_logits(dyhead_tower["visual"][l])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
x = dyhead_tower["visual"][l] |
|
B, _, H, W = x.shape |
|
C = proj_tokens.shape[2] |
|
proj_queries = self.contrastive_align_projection_image(dyhead_tower["visual"][l]) |
|
proj_queries = permute_and_flatten(proj_queries, B, -1, C, H, W) |
|
normalized_img_emb = F.normalize(proj_queries, p=2, dim=-1) |
|
normalized_text_emb = proj_tokens |
|
contrastive_logit = ( |
|
torch.matmul(normalized_img_emb, normalized_text_emb.transpose(-1, -2)) / self.log_scale.exp()) |
|
contrastive_logits.append(contrastive_logit) |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
x = dyhead_tower["visual"][l] |
|
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES: |
|
fused_visual_features.append(x) |
|
B, C, H, W = x.shape |
|
|
|
|
|
dot_product_proj_queries = self.dot_product_projection_image(x) |
|
dot_product_proj_queries = permute_and_flatten(dot_product_proj_queries, B, -1, C, H, W) |
|
|
|
A = dot_product_proj_queries.shape[1] |
|
bias = dot_product_proj_tokens_bias.unsqueeze(1).repeat(1, A, 1) |
|
|
|
dot_product_logit = (torch.matmul(dot_product_proj_queries, dot_product_proj_tokens.transpose(-1, -2)) / self.log_scale.exp()) + bias |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_DOT_PRODUCT: |
|
dot_product_logit = torch.clamp(dot_product_logit, max=50000) |
|
dot_product_logit = torch.clamp(dot_product_logit, min=-50000) |
|
dot_product_logits.append(dot_product_logit) |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS: |
|
feat = feature |
|
BF, CF, HF, WF = feat.shape |
|
shallow_img_emb = permute_and_flatten(feat, BF, -1, CF, HF, WF) |
|
shallow_img_emb_feats.append(shallow_img_emb) |
|
|
|
|
|
if shallow_img_emb_feats is not None and shallow_text_emb is not None: |
|
|
|
proj_tokens = shallow_text_emb |
|
return logits, bbox_reg, centerness, t_logits, proj_tokens, contrastive_logits, dot_product_logits, mlm_logits, shallow_img_emb_feats, fused_visual_features |
|
|
|
|
|
class VLDyHeadModule(torch.nn.Module): |
|
|
|
def __init__(self, cfg): |
|
super(VLDyHeadModule, self).__init__() |
|
self.cfg = cfg |
|
self.head = VLDyHead(cfg) |
|
box_coder = BoxCoder(cfg) |
|
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder) |
|
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True) |
|
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False) |
|
self.anchor_generator = make_anchor_generator_complex(cfg) |
|
|
|
self.lang_model = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE |
|
self.joint_embedding_size = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_SIZE |
|
self.joint_embedding_dropout = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_DROPOUT |
|
if self.lang_model in ["bert-base-uncased", "roberta-base", "clip"]: |
|
self.lang_dim = cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM |
|
else: |
|
self.lang_dim = 1024 |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
self.resizer = FeatureResizer( |
|
input_feat_size=self.lang_dim, |
|
output_feat_size=self.joint_embedding_size, |
|
dropout=self.joint_embedding_dropout |
|
) |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER: |
|
self.tunable_linear = torch.nn.Linear(self.lang_dim, 1000, bias=False) |
|
self.tunable_linear.weight.data.fill_(0.0) |
|
|
|
def forward(self, images, features, targets=None, |
|
language_dict_features=None, |
|
positive_map=None, |
|
captions=None, |
|
swint_feature_c4=None |
|
): |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
|
|
embedding = language_dict_features['embedded'] |
|
embedding = self.resizer(embedding) |
|
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
|
|
embedding = language_dict_features['embedded'] |
|
else: |
|
embedding = None |
|
|
|
if "masks" in language_dict_features: |
|
text_masks = language_dict_features["masks"] |
|
else: |
|
text_masks = None |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER: |
|
embedding = self.tunable_linear.weight[:embedding.size(1), :].unsqueeze(0) + embedding |
|
language_dict_features['embedded'] = embedding |
|
language_dict_features['hidden'] = self.tunable_linear.weight[:embedding.size(1), :].unsqueeze(0) + language_dict_features['hidden'] |
|
|
|
box_cls, box_regression, centerness, token_logits, \ |
|
proj_tokens, contrastive_logits, dot_product_logits, mlm_logits, shallow_img_emb_feats, fused_visual_features = self.head(features, |
|
language_dict_features, |
|
embedding, |
|
swint_feature_c4 |
|
) |
|
anchors = self.anchor_generator(images, features) |
|
|
|
if self.training: |
|
return self._forward_train(box_cls, box_regression, centerness, targets, anchors, |
|
captions, |
|
positive_map, |
|
token_logits, |
|
proj_tokens, |
|
contrastive_logits, |
|
dot_product_logits, |
|
text_masks, |
|
mlm_logits = mlm_logits, |
|
mlm_labels = language_dict_features["mlm_labels"], |
|
shallow_img_emb_feats=shallow_img_emb_feats, |
|
fused_visual_features=fused_visual_features |
|
) |
|
else: |
|
return self._forward_test(box_regression, centerness, anchors, |
|
box_cls, |
|
token_logits, |
|
dot_product_logits, |
|
positive_map, |
|
fused_visual_features=fused_visual_features |
|
) |
|
|
|
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors, |
|
captions=None, |
|
positive_map=None, |
|
token_logits=None, |
|
proj_tokens=None, |
|
contrastive_logits=None, |
|
dot_product_logits=None, |
|
text_masks=None, |
|
mlm_logits=None, |
|
mlm_labels=None, |
|
shallow_img_emb_feats=None, |
|
fused_visual_features=None |
|
): |
|
|
|
loss_box_cls, loss_box_reg, loss_centerness, loss_token, loss_contrastive_align, loss_dot_product_token, loss_shallow_contrastive = self.loss_evaluator( |
|
box_cls, box_regression, centerness, targets, anchors, |
|
captions, |
|
positive_map, |
|
token_logits, |
|
proj_tokens, |
|
contrastive_logits, |
|
dot_product_logits, |
|
text_masks, |
|
shallow_img_emb_feats |
|
) |
|
|
|
losses = { |
|
|
|
"loss_reg": loss_box_reg, |
|
"loss_centerness": loss_centerness |
|
} |
|
|
|
if mlm_labels is not None and mlm_logits is not None: |
|
losses["mlm_loss"] = nn.CrossEntropyLoss(ignore_index = -100)(mlm_logits.view(-1, mlm_logits.size(-1)), mlm_labels.view(-1)) * self.cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_COEF |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CLASSIFICATION_LOSS: |
|
losses["loss_cls"] = loss_box_cls |
|
else: |
|
losses["loss_cls"] = 0.0 * loss_box_cls |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: |
|
losses["loss_token"] = loss_token * self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_LOSS_WEIGHT |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: |
|
losses["loss_contrastive_align"] = loss_contrastive_align * \ |
|
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.CONTRASTIVE_ALIGN_LOSS_WEIGHT |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: |
|
losses["loss_dot_product_token"] = loss_dot_product_token * \ |
|
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DOT_PRODUCT_TOKEN_LOSS_WEIGHT |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS or \ |
|
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS: |
|
losses["loss_shallow_contrastive"] = loss_shallow_contrastive * \ |
|
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_CONTRASTIVE_LOSS_WEIGHT |
|
|
|
if self.cfg.MODEL.RPN_ONLY: |
|
return None, losses, None |
|
else: |
|
|
|
assert (box_regression[0].shape[0]) == 1 |
|
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=1) |
|
boxes = self.box_selector_train(box_regression, centerness, anchors, |
|
box_cls, |
|
token_logits, |
|
dot_product_logits, |
|
positive_map=positive_map_label_to_token |
|
) |
|
train_boxes = [] |
|
for b, t in zip(boxes, targets): |
|
tb = t.copy_with_fields(["labels"]) |
|
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device)) |
|
train_boxes.append(cat_boxlist([b, tb])) |
|
return train_boxes, losses, fused_visual_features |
|
|
|
def _forward_test(self, box_regression, centerness, anchors, |
|
box_cls=None, |
|
token_logits=None, |
|
dot_product_logits=None, |
|
positive_map=None, |
|
fused_visual_features=None |
|
): |
|
|
|
boxes = self.box_selector_test(box_regression, centerness, anchors, |
|
box_cls, |
|
token_logits, |
|
dot_product_logits, |
|
positive_map, |
|
) |
|
return boxes, {}, fused_visual_features |
|
|