|
|
|
""" |
|
Miscellaneous utility functions |
|
""" |
|
|
|
import torch |
|
|
|
|
|
def cat(tensors, dim=0): |
|
""" |
|
Efficient version of torch.cat that avoids a copy if there is only a single element in a list |
|
""" |
|
assert isinstance(tensors, (list, tuple)) |
|
if len(tensors) == 1: |
|
return tensors[0] |
|
return torch.cat(tensors, dim) |
|
|
|
|
|
def permute_and_flatten(layer, N, A, C, H, W): |
|
layer = layer.view(N, -1, C, H, W) |
|
layer = layer.permute(0, 3, 4, 1, 2) |
|
layer = layer.reshape(N, -1, C) |
|
return layer |
|
|
|
|
|
def concat_box_prediction_layers(box_regression, box_cls=None, token_logits=None): |
|
box_regression_flattened = [] |
|
box_cls_flattened = [] |
|
token_logit_flattened = [] |
|
|
|
|
|
|
|
|
|
|
|
for box_cls_per_level, box_regression_per_level in zip( |
|
box_cls, box_regression |
|
): |
|
N, AxC, H, W = box_cls_per_level.shape |
|
Ax4 = box_regression_per_level.shape[1] |
|
A = Ax4 // 4 |
|
C = AxC // A |
|
box_cls_per_level = permute_and_flatten( |
|
box_cls_per_level, N, A, C, H, W |
|
) |
|
box_cls_flattened.append(box_cls_per_level) |
|
|
|
box_regression_per_level = permute_and_flatten( |
|
box_regression_per_level, N, A, 4, H, W |
|
) |
|
box_regression_flattened.append(box_regression_per_level) |
|
|
|
if token_logits is not None: |
|
for token_logit_per_level in token_logits: |
|
N, AXT, H, W = token_logit_per_level.shape |
|
T = AXT // A |
|
token_logit_per_level = permute_and_flatten( |
|
token_logit_per_level, N, A, T, H, W |
|
) |
|
token_logit_flattened.append(token_logit_per_level) |
|
|
|
|
|
|
|
|
|
box_cls = cat(box_cls_flattened, dim=1).reshape(-1, C) |
|
box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4) |
|
|
|
token_logits_stacked = None |
|
if token_logits is not None: |
|
|
|
token_logits_stacked = cat(token_logit_flattened, dim=1) |
|
|
|
return box_regression, box_cls, token_logits_stacked |
|
|
|
|
|
def round_channels(channels, divisor=8): |
|
rounded_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor) |
|
if float(rounded_channels) < 0.9 * channels: |
|
rounded_channels += divisor |
|
return rounded_channels |
|
|