|
|
|
import torch |
|
import itertools |
|
|
|
from .lr_scheduler import WarmupMultiStepLR, WarmupCosineAnnealingLR, WarmupReduceLROnPlateau |
|
|
|
|
|
def make_optimizer(cfg, model): |
|
def maybe_add_full_model_gradient_clipping(optim): |
|
|
|
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE |
|
enable = ( |
|
cfg.SOLVER.CLIP_GRADIENTS.ENABLED |
|
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" |
|
and clip_norm_val > 0.0 |
|
) |
|
|
|
class FullModelGradientClippingOptimizer(optim): |
|
def step(self, closure=None): |
|
all_params = itertools.chain(*[x["params"] for x in self.param_groups]) |
|
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) |
|
super().step(closure=closure) |
|
|
|
return FullModelGradientClippingOptimizer if enable else optim |
|
|
|
params = [] |
|
for key, value in model.named_parameters(): |
|
if not value.requires_grad: |
|
continue |
|
lr = cfg.SOLVER.BASE_LR |
|
weight_decay = cfg.SOLVER.WEIGHT_DECAY |
|
|
|
|
|
if "language_backbone" in key: |
|
lr = cfg.SOLVER.LANG_LR |
|
|
|
if "backbone.body" in key and "language_backbone.body" not in key: |
|
lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BACKBONE_BODY_LR_FACTOR |
|
|
|
if "bias" in key: |
|
lr *= cfg.SOLVER.BIAS_LR_FACTOR |
|
weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS |
|
|
|
if 'norm' in key or 'Norm' in key: |
|
weight_decay *= cfg.SOLVER.WEIGHT_DECAY_NORM_FACTOR |
|
print("Setting weight decay of {} to {}".format(key, weight_decay)) |
|
|
|
params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] |
|
|
|
if cfg.SOLVER.OPTIMIZER == "SGD": |
|
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(params, lr, momentum=cfg.SOLVER.MOMENTUM) |
|
elif cfg.SOLVER.OPTIMIZER == "ADAMW": |
|
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(params, lr) |
|
|
|
return optimizer |
|
|
|
|
|
def make_lr_scheduler(cfg, optimizer): |
|
if cfg.SOLVER.MULTI_MAX_EPOCH: |
|
assert len(cfg.SOLVER.MULTI_MAX_EPOCH) == len(cfg.SOLVER.STEPS) |
|
lr_scheduler = [] |
|
|
|
for stage_step, stage_max_epoch in zip(cfg.SOLVER.STEPS, cfg.SOLVER.MULTI_MAX_ITER): |
|
milestones = [] |
|
for step in stage_step: |
|
milestones.append(round(step * stage_max_epoch)) |
|
lr_scheduler.append(WarmupMultiStepLR(optimizer, |
|
milestones, |
|
cfg.SOLVER.GAMMA, |
|
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, |
|
warmup_iters=cfg.SOLVER.WARMUP_ITERS, |
|
warmup_method=cfg.SOLVER.WARMUP_METHOD, ) |
|
) |
|
return lr_scheduler |
|
|
|
elif cfg.SOLVER.USE_COSINE: |
|
max_iters = cfg.SOLVER.MAX_ITER |
|
return WarmupCosineAnnealingLR( |
|
optimizer, |
|
max_iters, |
|
cfg.SOLVER.GAMMA, |
|
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, |
|
warmup_iters=cfg.SOLVER.WARMUP_ITERS, |
|
warmup_method=cfg.SOLVER.WARMUP_METHOD, |
|
eta_min=cfg.SOLVER.MIN_LR |
|
) |
|
|
|
elif cfg.SOLVER.USE_AUTOSTEP: |
|
max_iters = cfg.SOLVER.MAX_ITER |
|
return WarmupReduceLROnPlateau( |
|
optimizer, |
|
max_iters, |
|
cfg.SOLVER.GAMMA, |
|
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, |
|
warmup_iters=cfg.SOLVER.WARMUP_ITERS, |
|
warmup_method=cfg.SOLVER.WARMUP_METHOD, |
|
eta_min=cfg.SOLVER.MIN_LR, |
|
patience=cfg.SOLVER.STEP_PATIENCE, |
|
verbose=True |
|
) |
|
|
|
else: |
|
milestones = [] |
|
for step in cfg.SOLVER.STEPS: |
|
if step < 1: |
|
milestones.append(round(step * cfg.SOLVER.MAX_ITER)) |
|
else: |
|
milestones.append(step) |
|
return WarmupMultiStepLR( |
|
optimizer, |
|
milestones, |
|
cfg.SOLVER.GAMMA, |
|
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, |
|
warmup_iters=cfg.SOLVER.WARMUP_ITERS, |
|
warmup_method=cfg.SOLVER.WARMUP_METHOD, |
|
) |
|
|