|
|
|
from bisect import bisect_right |
|
|
|
import math |
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler): |
|
def __init__( |
|
self, |
|
optimizer, |
|
milestones, |
|
gamma=0.1, |
|
warmup_factor=1.0 / 3, |
|
warmup_iters=500, |
|
warmup_method="linear", |
|
last_epoch=-1, |
|
): |
|
if not list(milestones) == sorted(milestones): |
|
raise ValueError( |
|
"Milestones should be a list of" " increasing integers. Got {}", |
|
milestones, |
|
) |
|
|
|
if warmup_method not in ("constant", "linear"): |
|
raise ValueError( |
|
"Only 'constant' or 'linear' warmup_method accepted" |
|
"got {}".format(warmup_method) |
|
) |
|
self.milestones = milestones |
|
self.gamma = gamma |
|
self.warmup_factor = warmup_factor |
|
self.warmup_iters = warmup_iters |
|
self.warmup_method = warmup_method |
|
super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
warmup_factor = 1 |
|
if self.last_epoch < self.warmup_iters: |
|
if self.warmup_method == "constant": |
|
warmup_factor = self.warmup_factor |
|
elif self.warmup_method == "linear": |
|
alpha = float(self.last_epoch) / self.warmup_iters |
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha |
|
return [ |
|
base_lr |
|
* warmup_factor |
|
* self.gamma ** bisect_right(self.milestones, self.last_epoch) |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
|
|
class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler): |
|
def __init__( |
|
self, |
|
optimizer, |
|
max_iters, |
|
gamma=0.1, |
|
warmup_factor=1.0 / 3, |
|
warmup_iters=500, |
|
warmup_method="linear", |
|
eta_min = 0, |
|
last_epoch=-1, |
|
): |
|
|
|
if warmup_method not in ("constant", "linear"): |
|
raise ValueError( |
|
"Only 'constant' or 'linear' warmup_method accepted" |
|
"got {}".format(warmup_method) |
|
) |
|
self.max_iters = max_iters |
|
self.gamma = gamma |
|
self.warmup_factor = warmup_factor |
|
self.warmup_iters = warmup_iters |
|
self.warmup_method = warmup_method |
|
self.eta_min = eta_min |
|
super(WarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
warmup_factor = 1 |
|
|
|
if self.last_epoch < self.warmup_iters: |
|
if self.warmup_method == "constant": |
|
warmup_factor = self.warmup_factor |
|
elif self.warmup_method == "linear": |
|
alpha = float(self.last_epoch) / self.warmup_iters |
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha |
|
return [ |
|
base_lr |
|
* warmup_factor |
|
for base_lr in self.base_lrs |
|
] |
|
else: |
|
return [ |
|
self.eta_min |
|
+ (base_lr - self.eta_min) |
|
* (1 + math.cos(math.pi * (self.last_epoch - self.warmup_iters) / self.max_iters)) / 2 |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
class WarmupReduceLROnPlateau(torch.optim.lr_scheduler.ReduceLROnPlateau): |
|
def __init__( |
|
self, |
|
optimizer, |
|
max_iters, |
|
gamma=0.1, |
|
warmup_factor=1.0 / 3, |
|
warmup_iters=500, |
|
warmup_method="linear", |
|
eta_min = 0, |
|
last_epoch=-1, |
|
patience = 5, |
|
verbose = False, |
|
): |
|
|
|
if warmup_method not in ("constant", "linear"): |
|
raise ValueError( |
|
"Only 'constant' or 'linear' warmup_method accepted" |
|
"got {}".format(warmup_method) |
|
) |
|
self.warmup_factor = warmup_factor |
|
self.warmup_iters = warmup_iters |
|
self.warmup_method = warmup_method |
|
self.eta_min = eta_min |
|
|
|
if last_epoch == -1: |
|
for group in optimizer.param_groups: |
|
group.setdefault('initial_lr', group['lr']) |
|
else: |
|
for i, group in enumerate(optimizer.param_groups): |
|
if 'initial_lr' not in group: |
|
raise KeyError("param 'initial_lr' is not specified " |
|
"in param_groups[{}] when resuming an optimizer".format(i)) |
|
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) |
|
super(WarmupReduceLROnPlateau, self).__init__(optimizer, factor=gamma, patience=patience, mode='max', min_lr=eta_min, verbose = verbose) |
|
|
|
def step(self, metrics=None): |
|
warmup_factor = 1 |
|
|
|
if self.last_epoch < self.warmup_iters: |
|
if self.warmup_method == "constant": |
|
warmup_factor = self.warmup_factor |
|
elif self.warmup_method == "linear": |
|
alpha = float(self.last_epoch) / self.warmup_iters |
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha |
|
|
|
if self.last_epoch >= self.warmup_iters-1: |
|
warmup_factor = 1.0 |
|
|
|
warmup_lrs = [ |
|
base_lr |
|
* warmup_factor |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
for param_group, lr in zip(self.optimizer.param_groups, warmup_lrs): |
|
param_group['lr'] = lr |
|
|
|
self.last_epoch += 1 |
|
elif metrics: |
|
super().step(metrics) |