|
|
|
import torch |
|
|
|
from .bounding_box import BoxList |
|
|
|
from maskrcnn_benchmark.layers import nms as _box_nms |
|
from maskrcnn_benchmark.layers import ml_nms as _box_ml_nms |
|
|
|
|
|
def boxlist_nms(boxlist, nms_thresh, max_proposals=-1, score_field="score"): |
|
""" |
|
Performs non-maximum suppression on a boxlist, with scores specified |
|
in a boxlist field via score_field. |
|
|
|
Arguments: |
|
boxlist(BoxList) |
|
nms_thresh (float) |
|
max_proposals (int): if > 0, then only the top max_proposals are kept |
|
after non-maxium suppression |
|
score_field (str) |
|
""" |
|
if nms_thresh <= 0: |
|
return boxlist |
|
mode = boxlist.mode |
|
boxlist = boxlist.convert("xyxy") |
|
boxes = boxlist.bbox |
|
score = boxlist.get_field(score_field) |
|
keep = _box_nms(boxes, score, nms_thresh) |
|
if max_proposals > 0: |
|
keep = keep[: max_proposals] |
|
boxlist = boxlist[keep] |
|
return boxlist.convert(mode) |
|
|
|
|
|
def boxlist_ml_nms(boxlist, nms_thresh, max_proposals=-1, |
|
score_field="scores", label_field="labels"): |
|
""" |
|
Performs non-maximum suppression on a boxlist, with scores specified |
|
in a boxlist field via score_field. |
|
|
|
Arguments: |
|
boxlist(BoxList) |
|
nms_thresh (float) |
|
max_proposals (int): if > 0, then only the top max_proposals are kept |
|
after non-maximum suppression |
|
score_field (str) |
|
""" |
|
if nms_thresh <= 0: |
|
return boxlist |
|
mode = boxlist.mode |
|
boxlist = boxlist.convert("xyxy") |
|
boxes = boxlist.bbox |
|
scores = boxlist.get_field(score_field) |
|
labels = boxlist.get_field(label_field) |
|
|
|
if boxes.device==torch.device("cpu"): |
|
keep = [] |
|
unique_labels = torch.unique(labels) |
|
print(unique_labels) |
|
for j in unique_labels: |
|
inds = (labels == j).nonzero().view(-1) |
|
|
|
scores_j = scores[inds] |
|
boxes_j = boxes[inds, :].view(-1, 4) |
|
keep_j = _box_nms(boxes_j, scores_j, nms_thresh) |
|
|
|
keep += keep_j |
|
else: |
|
keep = _box_ml_nms(boxes, scores, labels.float(), nms_thresh) |
|
|
|
if max_proposals > 0: |
|
keep = keep[: max_proposals] |
|
boxlist = boxlist[keep] |
|
|
|
return boxlist.convert(mode) |
|
|
|
|
|
def remove_small_boxes(boxlist, min_size): |
|
""" |
|
Only keep boxes with both sides >= min_size |
|
|
|
Arguments: |
|
boxlist (Boxlist) |
|
min_size (int) |
|
""" |
|
|
|
xywh_boxes = boxlist.convert("xywh").bbox |
|
_, _, ws, hs = xywh_boxes.split(1, dim=1) |
|
ws = ws.squeeze(1) |
|
hs = hs.squeeze(1) |
|
keep = ((ws >= min_size) & (hs >= min_size)).nonzero().squeeze(1) |
|
return boxlist[keep] |
|
|
|
|
|
|
|
|
|
def boxlist_iou(boxlist1, boxlist2): |
|
"""Compute the intersection over union of two set of boxes. |
|
The box order must be (xmin, ymin, xmax, ymax). |
|
|
|
Arguments: |
|
box1: (BoxList) bounding boxes, sized [N,4]. |
|
box2: (BoxList) bounding boxes, sized [M,4]. |
|
|
|
Returns: |
|
(tensor) iou, sized [N,M]. |
|
|
|
Reference: |
|
https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py |
|
""" |
|
if boxlist1.size != boxlist2.size: |
|
raise RuntimeError( |
|
"boxlists should have same image size, got {}, {}".format(boxlist1, boxlist2)) |
|
|
|
N = len(boxlist1) |
|
M = len(boxlist2) |
|
|
|
area1 = boxlist1.area() |
|
area2 = boxlist2.area() |
|
|
|
box1, box2 = boxlist1.bbox, boxlist2.bbox |
|
|
|
lt = torch.max(box1[:, None, :2], box2[:, :2]) |
|
rb = torch.min(box1[:, None, 2:], box2[:, 2:]) |
|
|
|
TO_REMOVE = 1 |
|
|
|
wh = (rb - lt + TO_REMOVE).clamp(min=0) |
|
inter = wh[:, :, 0] * wh[:, :, 1] |
|
|
|
iou = inter / (area1[:, None] + area2 - inter) |
|
return iou |
|
|
|
|
|
|
|
def _cat(tensors, dim=0): |
|
""" |
|
Efficient version of torch.cat that avoids a copy if there is only a single element in a list |
|
""" |
|
assert isinstance(tensors, (list, tuple)) |
|
if len(tensors) == 1: |
|
return tensors[0] |
|
if isinstance(tensors[0], torch.Tensor): |
|
return torch.cat(tensors, dim) |
|
else: |
|
return cat_boxlist(tensors) |
|
|
|
def cat_boxlist(bboxes): |
|
""" |
|
Concatenates a list of BoxList (having the same image size) into a |
|
single BoxList |
|
|
|
Arguments: |
|
bboxes (list[BoxList]) |
|
""" |
|
assert isinstance(bboxes, (list, tuple)) |
|
assert all(isinstance(bbox, BoxList) for bbox in bboxes) |
|
|
|
size = bboxes[0].size |
|
assert all(bbox.size == size for bbox in bboxes) |
|
|
|
mode = bboxes[0].mode |
|
assert all(bbox.mode == mode for bbox in bboxes) |
|
|
|
fields = set(bboxes[0].fields()) |
|
assert all(set(bbox.fields()) == fields for bbox in bboxes) |
|
|
|
cat_boxes = BoxList(_cat([bbox.bbox for bbox in bboxes], dim=0), size, mode) |
|
|
|
for field in fields: |
|
data = _cat([bbox.get_field(field) for bbox in bboxes], dim=0) |
|
cat_boxes.add_field(field, data) |
|
|
|
return cat_boxes |
|
|
|
|
|
def getUnionBBox(aBB, bBB, margin = 10): |
|
assert aBB.size==bBB.size |
|
assert aBB.mode==bBB.mode |
|
ih, iw = aBB.size |
|
union_boxes = torch.cat([(torch.min(aBB.bbox[:,[0,1]], bBB.bbox[:,[0,1]]) - margin).clamp(min=0), \ |
|
(torch.max(aBB.bbox[:,[2]], bBB.bbox[:,[2]]) + margin).clamp(max=iw), \ |
|
(torch.max(aBB.bbox[:,[3]], bBB.bbox[:,[3]]) + margin).clamp(max=ih)], dim=1) |
|
return BoxList(union_boxes, aBB.size, mode=aBB.mode) |
|
|