|
|
|
from __future__ import division |
|
|
|
import torch |
|
|
|
|
|
class ImageList(object): |
|
""" |
|
Structure that holds a list of images (of possibly |
|
varying sizes) as a single tensor. |
|
This works by padding the images to the same size, |
|
and storing in a field the original sizes of each image |
|
""" |
|
|
|
def __init__(self, tensors, image_sizes): |
|
""" |
|
Arguments: |
|
tensors (tensor) |
|
image_sizes (list[tuple[int, int]]) |
|
""" |
|
self.tensors = tensors |
|
self.image_sizes = image_sizes |
|
|
|
def to(self, *args, **kwargs): |
|
cast_tensor = self.tensors.to(*args, **kwargs) |
|
return ImageList(cast_tensor, self.image_sizes) |
|
|
|
|
|
def to_image_list(tensors, size_divisible=0): |
|
""" |
|
tensors can be an ImageList, a torch.Tensor or |
|
an iterable of Tensors. It can't be a numpy array. |
|
When tensors is an iterable of Tensors, it pads |
|
the Tensors with zeros so that they have the same |
|
shape |
|
""" |
|
if isinstance(tensors, torch.Tensor) and size_divisible > 0: |
|
tensors = [tensors] |
|
|
|
if isinstance(tensors, ImageList): |
|
return tensors |
|
elif isinstance(tensors, torch.Tensor): |
|
|
|
assert tensors.dim() == 4 |
|
image_sizes = [tensor.shape[-2:] for tensor in tensors] |
|
return ImageList(tensors, image_sizes) |
|
elif isinstance(tensors, (tuple, list)): |
|
max_size = tuple(max(s) for s in zip(*[img.shape for img in tensors])) |
|
|
|
|
|
|
|
if size_divisible > 0: |
|
import math |
|
|
|
stride = size_divisible |
|
max_size = list(max_size) |
|
max_size[1] = int(math.ceil(max_size[1] / stride) * stride) |
|
max_size[2] = int(math.ceil(max_size[2] / stride) * stride) |
|
max_size = tuple(max_size) |
|
|
|
batch_shape = (len(tensors),) + max_size |
|
batched_imgs = tensors[0].new(*batch_shape).zero_() |
|
for img, pad_img in zip(tensors, batched_imgs): |
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
|
|
image_sizes = [im.shape[-2:] for im in tensors] |
|
|
|
return ImageList(batched_imgs, image_sizes) |
|
else: |
|
raise TypeError("Unsupported type for to_image_list: {}".format(type(tensors))) |
|
|