|
|
|
import torch |
|
|
|
import pycocotools.mask as mask_utils |
|
|
|
|
|
FLIP_LEFT_RIGHT = 0 |
|
FLIP_TOP_BOTTOM = 1 |
|
|
|
|
|
class Mask(object): |
|
""" |
|
This class is unfinished and not meant for use yet |
|
It is supposed to contain the mask for an object as |
|
a 2d tensor |
|
""" |
|
|
|
def __init__(self, masks, size, mode): |
|
self.masks = masks |
|
self.size = size |
|
self.mode = mode |
|
|
|
def transpose(self, method): |
|
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): |
|
raise NotImplementedError( |
|
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" |
|
) |
|
|
|
width, height = self.size |
|
if method == FLIP_LEFT_RIGHT: |
|
dim = width |
|
idx = 2 |
|
elif method == FLIP_TOP_BOTTOM: |
|
dim = height |
|
idx = 1 |
|
|
|
flip_idx = list(range(dim)[::-1]) |
|
flipped_masks = self.masks.index_select(dim, flip_idx) |
|
return Mask(flipped_masks, self.size, self.mode) |
|
|
|
def crop(self, box): |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
|
|
cropped_masks = self.masks[:, box[1] : box[3], box[0] : box[2]] |
|
return Mask(cropped_masks, size=(w, h), mode=self.mode) |
|
|
|
def resize(self, size, *args, **kwargs): |
|
pass |
|
|
|
|
|
class Polygons(object): |
|
""" |
|
This class holds a set of polygons that represents a single instance |
|
of an object mask. The object can be represented as a set of |
|
polygons |
|
""" |
|
|
|
def __init__(self, polygons, size, mode): |
|
|
|
if isinstance(polygons, list): |
|
polygons = [torch.as_tensor(p, dtype=torch.float32) for p in polygons] |
|
elif isinstance(polygons, Polygons): |
|
polygons = polygons.polygons |
|
|
|
self.polygons = polygons |
|
self.size = size |
|
self.mode = mode |
|
|
|
def transpose(self, method): |
|
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): |
|
raise NotImplementedError( |
|
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" |
|
) |
|
|
|
flipped_polygons = [] |
|
width, height = self.size |
|
if method == FLIP_LEFT_RIGHT: |
|
dim = width |
|
idx = 0 |
|
elif method == FLIP_TOP_BOTTOM: |
|
dim = height |
|
idx = 1 |
|
|
|
for poly in self.polygons: |
|
p = poly.clone() |
|
TO_REMOVE = 1 |
|
p[idx::2] = dim - poly[idx::2] - TO_REMOVE |
|
flipped_polygons.append(p) |
|
|
|
return Polygons(flipped_polygons, size=self.size, mode=self.mode) |
|
|
|
def crop(self, box): |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
|
|
|
|
w = max(w, 1) |
|
h = max(h, 1) |
|
|
|
cropped_polygons = [] |
|
for poly in self.polygons: |
|
p = poly.clone() |
|
p[0::2] = p[0::2] - box[0] |
|
p[1::2] = p[1::2] - box[1] |
|
cropped_polygons.append(p) |
|
|
|
return Polygons(cropped_polygons, size=(w, h), mode=self.mode) |
|
|
|
def resize(self, size, *args, **kwargs): |
|
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) |
|
if ratios[0] == ratios[1]: |
|
ratio = ratios[0] |
|
scaled_polys = [p * ratio for p in self.polygons] |
|
return Polygons(scaled_polys, size, mode=self.mode) |
|
|
|
ratio_w, ratio_h = ratios |
|
scaled_polygons = [] |
|
for poly in self.polygons: |
|
p = poly.clone() |
|
p[0::2] *= ratio_w |
|
p[1::2] *= ratio_h |
|
scaled_polygons.append(p) |
|
|
|
return Polygons(scaled_polygons, size=size, mode=self.mode) |
|
|
|
def convert(self, mode): |
|
width, height = self.size |
|
if mode == "mask": |
|
rles = mask_utils.frPyObjects( |
|
[p.detach().numpy() for p in self.polygons], height, width |
|
) |
|
rle = mask_utils.merge(rles) |
|
mask = mask_utils.decode(rle) |
|
mask = torch.from_numpy(mask) |
|
|
|
return mask |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ + "(" |
|
s += "num_polygons={}, ".format(len(self.polygons)) |
|
s += "image_width={}, ".format(self.size[0]) |
|
s += "image_height={}, ".format(self.size[1]) |
|
s += "mode={})".format(self.mode) |
|
return s |
|
|
|
|
|
class SegmentationMask(object): |
|
""" |
|
This class stores the segmentations for all objects in the image |
|
""" |
|
|
|
def __init__(self, polygons, size, mode=None): |
|
""" |
|
Arguments: |
|
polygons: a list of list of lists of numbers. The first |
|
level of the list correspond to individual instances, |
|
the second level to all the polygons that compose the |
|
object, and the third level to the polygon coordinates. |
|
""" |
|
assert isinstance(polygons, list) |
|
|
|
self.polygons = [Polygons(p, size, mode) for p in polygons] |
|
self.size = size |
|
self.mode = mode |
|
|
|
def transpose(self, method): |
|
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): |
|
raise NotImplementedError( |
|
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" |
|
) |
|
|
|
flipped = [] |
|
for polygon in self.polygons: |
|
flipped.append(polygon.transpose(method)) |
|
return SegmentationMask(flipped, size=self.size, mode=self.mode) |
|
|
|
def crop(self, box): |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
cropped = [] |
|
for polygon in self.polygons: |
|
cropped.append(polygon.crop(box)) |
|
return SegmentationMask(cropped, size=(w, h), mode=self.mode) |
|
|
|
def resize(self, size, *args, **kwargs): |
|
scaled = [] |
|
for polygon in self.polygons: |
|
scaled.append(polygon.resize(size, *args, **kwargs)) |
|
return SegmentationMask(scaled, size=size, mode=self.mode) |
|
|
|
def to(self, *args, **kwargs): |
|
return self |
|
|
|
def __getitem__(self, item): |
|
if isinstance(item, (int, slice)): |
|
selected_polygons = [self.polygons[item]] |
|
else: |
|
|
|
selected_polygons = [] |
|
if isinstance(item, torch.Tensor) and item.dtype == torch.bool: |
|
item = item.nonzero() |
|
item = item.squeeze(1) if item.numel() > 0 else item |
|
item = item.tolist() |
|
for i in item: |
|
selected_polygons.append(self.polygons[i]) |
|
return SegmentationMask(selected_polygons, size=self.size, mode=self.mode) |
|
|
|
def __iter__(self): |
|
return iter(self.polygons) |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ + "(" |
|
s += "num_instances={}, ".format(len(self.polygons)) |
|
s += "image_width={}, ".format(self.size[0]) |
|
s += "image_height={})".format(self.size[1]) |
|
return s |
|
|