|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from collections import OrderedDict |
|
|
|
|
|
def tf2th(conv_weights): |
|
"""Possibly convert HWIO to OIHW.""" |
|
if conv_weights.ndim == 4: |
|
conv_weights = conv_weights.transpose([3, 2, 0, 1]) |
|
return torch.from_numpy(conv_weights) |
|
|
|
|
|
def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg): |
|
import re |
|
layer_keys = sorted(state_dict.keys()) |
|
for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1): |
|
if not stage_with_dcn: |
|
continue |
|
for old_key in layer_keys: |
|
pattern = ".*block{}.*conv2.*".format(ix) |
|
r = re.match(pattern, old_key) |
|
if r is None: |
|
continue |
|
for param in ["weight", "bias"]: |
|
if old_key.find(param) is -1: |
|
continue |
|
if 'unit01' in old_key: |
|
continue |
|
new_key = old_key.replace( |
|
"conv2.{}".format(param), "conv2.conv.{}".format(param) |
|
) |
|
print("pattern: {}, old_key: {}, new_key: {}".format( |
|
pattern, old_key, new_key |
|
)) |
|
|
|
w = state_dict[old_key] |
|
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False) |
|
w = (w - m) / torch.sqrt(v + 1e-10) |
|
|
|
state_dict[new_key] = w |
|
del state_dict[old_key] |
|
return state_dict |
|
|
|
|
|
def load_big_format(cfg, f): |
|
model = OrderedDict() |
|
weights = np.load(f) |
|
|
|
cmap = {'a':1, 'b':2, 'c':3} |
|
for key, val in weights.items(): |
|
old_key = key.replace('resnet/', '') |
|
if 'root_block' in old_key: |
|
new_key = 'root.conv.weight' |
|
elif '/proj/standardized_conv2d/kernel' in old_key: |
|
key_pattern = old_key.replace('/proj/standardized_conv2d/kernel', '').replace('resnet/', '') |
|
bname, uname, cidx = key_pattern.split('/') |
|
new_key = '{}.downsample.{}.conv{}.weight'.format(bname,uname,cmap[cidx]) |
|
elif '/standardized_conv2d/kernel' in old_key: |
|
key_pattern = old_key.replace('/standardized_conv2d/kernel', '').replace('resnet/', '') |
|
bname, uname, cidx = key_pattern.split('/') |
|
new_key = '{}.{}.conv{}.weight'.format(bname,uname,cmap[cidx]) |
|
elif '/group_norm/gamma' in old_key: |
|
key_pattern = old_key.replace('/group_norm/gamma', '').replace('resnet/', '') |
|
bname, uname, cidx = key_pattern.split('/') |
|
new_key = '{}.{}.gn{}.weight'.format(bname,uname,cmap[cidx]) |
|
elif '/group_norm/beta' in old_key: |
|
key_pattern = old_key.replace('/group_norm/beta', '').replace('resnet/', '') |
|
bname, uname, cidx = key_pattern.split('/') |
|
new_key = '{}.{}.gn{}.bias'.format(bname,uname,cmap[cidx]) |
|
else: |
|
print('Unknown key {}'.format(old_key)) |
|
continue |
|
print('Map {} -> {}'.format(key, new_key)) |
|
model[new_key] = tf2th(val) |
|
|
|
model = _rename_conv_weights_for_deformable_conv_layers(model, cfg) |
|
|
|
return dict(model=model) |
|
|