|
|
|
import logging |
|
import os |
|
|
|
import torch |
|
|
|
from maskrcnn_benchmark.utils.model_serialization import load_state_dict |
|
from maskrcnn_benchmark.utils.c2_model_loading import load_c2_format |
|
from maskrcnn_benchmark.utils.big_model_loading import load_big_format |
|
from maskrcnn_benchmark.utils.pretrain_model_loading import load_pretrain_format |
|
from maskrcnn_benchmark.utils.imports import import_file |
|
from maskrcnn_benchmark.utils.model_zoo import cache_url |
|
|
|
|
|
class Checkpointer(object): |
|
def __init__( |
|
self, |
|
model, |
|
optimizer=None, |
|
scheduler=None, |
|
save_dir="", |
|
save_to_disk=None, |
|
logger=None, |
|
): |
|
self.model = model |
|
self.optimizer = optimizer |
|
self.scheduler = scheduler |
|
self.save_dir = save_dir |
|
self.save_to_disk = save_to_disk |
|
if logger is None: |
|
logger = logging.getLogger(__name__) |
|
self.logger = logger |
|
|
|
def save(self, name, **kwargs): |
|
if not self.save_dir: |
|
return |
|
|
|
if not self.save_to_disk: |
|
return |
|
|
|
data = {} |
|
data["model"] = self.model.state_dict() |
|
if self.optimizer is not None: |
|
data["optimizer"] = self.optimizer.state_dict() |
|
if self.scheduler is not None: |
|
if isinstance(self.scheduler, list): |
|
data["scheduler"] = [scheduler.state_dict() for scheduler in self.scheduler] |
|
else: |
|
data["scheduler"] = self.scheduler.state_dict() |
|
data.update(kwargs) |
|
|
|
save_file = os.path.join(self.save_dir, "{}.pth".format(name)) |
|
self.logger.info("Saving checkpoint to {}".format(save_file)) |
|
torch.save(data, save_file) |
|
|
|
|
|
self.tag_last_checkpoint("{}.pth".format(name)) |
|
|
|
def load(self, f=None, force=False, keyword="model", skip_optimizer =False): |
|
resume = False |
|
if self.has_checkpoint() and not force: |
|
|
|
f = self.get_checkpoint_file() |
|
|
|
f = os.path.join(self.save_dir, f) |
|
resume = True |
|
if not f: |
|
|
|
self.logger.info("No checkpoint found. Initializing model from scratch") |
|
return {} |
|
self.logger.info("Loading checkpoint from {}".format(f)) |
|
checkpoint = self._load_file(f) |
|
self._load_model(checkpoint, keyword=keyword) |
|
|
|
|
|
if resume and not skip_optimizer: |
|
if "optimizer" in checkpoint and self.optimizer: |
|
self.logger.info("Loading optimizer from {}".format(f)) |
|
self.optimizer.load_state_dict(checkpoint.pop("optimizer")) |
|
if "scheduler" in checkpoint and self.scheduler: |
|
self.logger.info("Loading scheduler from {}".format(f)) |
|
if isinstance(self.scheduler, list): |
|
for scheduler, state_dict in zip(self.scheduler, checkpoint.pop("scheduler")): |
|
scheduler.load_state_dict(state_dict) |
|
else: |
|
self.scheduler.load_state_dict(checkpoint.pop("scheduler")) |
|
|
|
|
|
return checkpoint |
|
else: |
|
return {} |
|
|
|
def has_checkpoint(self): |
|
save_file = os.path.join(self.save_dir, "last_checkpoint") |
|
return os.path.exists(save_file) |
|
|
|
def get_checkpoint_file(self): |
|
save_file = os.path.join(self.save_dir, "last_checkpoint") |
|
try: |
|
with open(save_file, "r") as f: |
|
last_saved = f.read() |
|
last_saved = last_saved.strip() |
|
except IOError: |
|
|
|
|
|
last_saved = "" |
|
return last_saved |
|
|
|
def tag_last_checkpoint(self, last_filename): |
|
save_file = os.path.join(self.save_dir, "last_checkpoint") |
|
with open(save_file, "w") as f: |
|
f.write(last_filename) |
|
|
|
def _load_file(self, f): |
|
return torch.load(f, map_location=torch.device("cpu")) |
|
|
|
def _load_model(self, checkpoint, keyword="model"): |
|
load_state_dict(self.model, checkpoint.pop(keyword)) |
|
|
|
|
|
class DetectronCheckpointer(Checkpointer): |
|
def __init__( |
|
self, |
|
cfg, |
|
model, |
|
optimizer=None, |
|
scheduler=None, |
|
save_dir="", |
|
save_to_disk=None, |
|
logger=None, |
|
): |
|
super(DetectronCheckpointer, self).__init__( |
|
model, optimizer, scheduler, save_dir, save_to_disk, logger |
|
) |
|
self.cfg = cfg.clone() |
|
|
|
def _load_file(self, f): |
|
|
|
if f.startswith("catalog://"): |
|
paths_catalog = import_file( |
|
"maskrcnn_benchmark.config.paths_catalog", self.cfg.PATHS_CATALOG, True |
|
) |
|
catalog_f = paths_catalog.ModelCatalog.get(f[len("catalog://") :]) |
|
self.logger.info("{} points to {}".format(f, catalog_f)) |
|
f = catalog_f |
|
|
|
if f.startswith("http"): |
|
|
|
cached_f = cache_url(f) |
|
self.logger.info("url {} cached in {}".format(f, cached_f)) |
|
f = cached_f |
|
|
|
if f.endswith(".pkl"): |
|
return load_c2_format(self.cfg, f) |
|
if f.endswith(".big"): |
|
return load_big_format(self.cfg, f) |
|
if f.endswith(".pretrain"): |
|
return load_pretrain_format(self.cfg, f) |
|
|
|
loaded = super(DetectronCheckpointer, self)._load_file(f) |
|
if "model" not in loaded: |
|
loaded = dict(model=loaded) |
|
return loaded |
|
|