|
|
|
|
|
""" |
|
Utilities related to distributed mode. |
|
|
|
By default, the reduce of metrics and such are done on GPU, since it's more straightforward (we reuse the NCCL backend) |
|
If you want to reduce on CPU instead (required for big datasets like GQA), use the env variable MDETR_CPU_REDUCE=1 |
|
""" |
|
import functools |
|
import io |
|
import os |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
_LOCAL_PROCESS_GROUP = None |
|
|
|
|
|
@functools.lru_cache() |
|
def _get_global_gloo_group(): |
|
""" |
|
Return a process group based on gloo backend, containing all the ranks |
|
The result is cached. |
|
""" |
|
|
|
if dist.get_backend() == "nccl": |
|
return dist.new_group(backend="gloo") |
|
|
|
return dist.group.WORLD |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
|
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
cpu_group = None |
|
if os.getenv("MDETR_CPU_REDUCE") == "1": |
|
cpu_group = _get_global_gloo_group() |
|
|
|
buffer = io.BytesIO() |
|
torch.save(data, buffer) |
|
data_view = buffer.getbuffer() |
|
device = "cuda" if cpu_group is None else "cpu" |
|
tensor = torch.ByteTensor(data_view).to(device) |
|
|
|
|
|
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) |
|
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)] |
|
if cpu_group is None: |
|
dist.all_gather(size_list, local_size) |
|
else: |
|
print("gathering on cpu") |
|
dist.all_gather(size_list, local_size, group=cpu_group) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
assert isinstance(local_size.item(), int) |
|
local_size = int(local_size.item()) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) |
|
if local_size != max_size: |
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device) |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
if cpu_group is None: |
|
dist.all_gather(tensor_list, tensor) |
|
else: |
|
dist.all_gather(tensor_list, tensor, group=cpu_group) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] |
|
buffer = io.BytesIO(tensor.cpu().numpy()) |
|
obj = torch.load(buffer) |
|
data_list.append(obj) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that all processes |
|
have the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.all_reduce(values) |
|
if average: |
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
|
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop("force", False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
""" |
|
Returns: |
|
True if distributed training is enabled |
|
""" |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
""" |
|
Returns: |
|
The number of processes in the process group |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
""" |
|
Returns: |
|
The rank of the current process within the global process group. |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def get_local_rank() -> int: |
|
""" |
|
Returns: |
|
The rank of the current process within the local (per-machine) process group. |
|
""" |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
assert _LOCAL_PROCESS_GROUP is not None |
|
return dist.get_rank(group=_LOCAL_PROCESS_GROUP) |
|
|
|
|
|
def get_local_size() -> int: |
|
""" |
|
Returns: |
|
The size of the per-machine process group, |
|
i.e. the number of processes per machine. |
|
""" |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) |
|
|
|
|
|
def is_main_process(): |
|
"""Return true if the current process is the main one""" |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
"""Utility function to save only from the main process""" |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
"""Initialize distributed training, if appropriate""" |
|
if "RANK" in os.environ and "WORLD_SIZE" in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ["WORLD_SIZE"]) |
|
args.gpu = int(os.environ["LOCAL_RANK"]) |
|
elif "SLURM_PROCID" in os.environ: |
|
args.rank = int(os.environ["SLURM_PROCID"]) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
else: |
|
print("Not using distributed mode") |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = "nccl" |
|
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) |
|
|
|
dist.init_process_group( |
|
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank |
|
) |
|
dist.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|