|
import argparse |
|
import logging |
|
import torch |
|
import torch.nn as nn |
|
import timeit |
|
|
|
from maskrcnn_benchmark.layers import * |
|
from maskrcnn_benchmark.modeling.backbone.resnet_big import StdConv2d |
|
from maskrcnn_benchmark.modeling.backbone.fpn import * |
|
from maskrcnn_benchmark.modeling.rpn.inference import * |
|
from maskrcnn_benchmark.modeling.roi_heads.box_head.inference import PostProcessor |
|
from maskrcnn_benchmark.modeling.rpn.anchor_generator import BufferList |
|
|
|
|
|
def profile(model, input_size, custom_ops={}, device="cpu", verbose=False, extra_args={}, return_time=False): |
|
handler_collection = [] |
|
|
|
def add_hooks(m): |
|
if len(list(m.children())) > 0: |
|
return |
|
|
|
m.register_buffer('total_ops', torch.zeros(1)) |
|
m.register_buffer('total_params', torch.zeros(1)) |
|
|
|
for p in m.parameters(): |
|
m.total_params += torch.Tensor([p.numel()]) |
|
|
|
m_type = type(m) |
|
fn = None |
|
|
|
if m_type in custom_ops: |
|
fn = custom_ops[m_type] |
|
elif m_type in register_hooks: |
|
fn = register_hooks[m_type] |
|
else: |
|
print("Not implemented for ", m) |
|
|
|
if fn is not None: |
|
if verbose: |
|
print("Register FLOP counter for module %s" % str(m)) |
|
handler = m.register_forward_hook(fn) |
|
handler_collection.append(handler) |
|
|
|
original_device = model.parameters().__next__().device |
|
training = model.training |
|
|
|
model.eval().to(device) |
|
model.apply(add_hooks) |
|
|
|
x = torch.zeros(input_size).to(device) |
|
with torch.no_grad(): |
|
tic = timeit.time.perf_counter() |
|
model(x, **extra_args) |
|
toc = timeit.time.perf_counter() |
|
total_time = toc-tic |
|
|
|
total_ops = 0 |
|
total_params = 0 |
|
for m in model.modules(): |
|
if len(list(m.children())) > 0: |
|
continue |
|
total_ops += m.total_ops |
|
total_params += m.total_params |
|
|
|
total_ops = total_ops.item() |
|
total_params = total_params.item() |
|
|
|
model.train(training).to(original_device) |
|
for handler in handler_collection: |
|
handler.remove() |
|
|
|
if return_time: |
|
return total_ops, total_params, total_time |
|
else: |
|
return total_ops, total_params |
|
|
|
|
|
multiply_adds = 1 |
|
def count_conv2d(m, x, y): |
|
x = x[0] |
|
cin = m.in_channels |
|
cout = m.out_channels |
|
kh, kw = m.kernel_size |
|
batch_size = x.size()[0] |
|
out_h = y.size(2) |
|
out_w = y.size(3) |
|
|
|
|
|
|
|
kernel_ops = multiply_adds * kh * kw * cin // m.groups |
|
bias_ops = 1 if m.bias is not None else 0 |
|
ops_per_element = kernel_ops + bias_ops |
|
|
|
|
|
output_elements = batch_size * out_w * out_h * cout |
|
total_ops = output_elements * ops_per_element |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_convtranspose2d(m, x, y): |
|
x = x[0] |
|
cin = m.in_channels |
|
cout = m.out_channels |
|
kh, kw = m.kernel_size |
|
batch_size = x.size()[0] |
|
out_h = y.size(2) |
|
out_w = y.size(3) |
|
|
|
|
|
|
|
kernel_ops = multiply_adds * kh * kw * cin // m.groups |
|
bias_ops = 1 if m.bias is not None else 0 |
|
ops_per_element = kernel_ops + bias_ops |
|
|
|
|
|
|
|
ops_per_element = m.weight.nelement() |
|
output_elements = y.nelement() |
|
total_ops = output_elements * ops_per_element |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_bn(m, x, y): |
|
x = x[0] |
|
nelements = x.numel() |
|
|
|
total_ops = 4*nelements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_relu(m, x, y): |
|
x = x[0] |
|
nelements = x.numel() |
|
total_ops = nelements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_softmax(m, x, y): |
|
x = x[0] |
|
batch_size, nfeatures = x.size() |
|
total_exp = nfeatures |
|
total_add = nfeatures - 1 |
|
total_div = nfeatures |
|
total_ops = batch_size * (total_exp + total_add + total_div) |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_maxpool(m, x, y): |
|
kernel_ops = torch.prod(torch.Tensor([m.kernel_size])) |
|
num_elements = y.numel() |
|
total_ops = kernel_ops * num_elements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_adap_maxpool(m, x, y): |
|
kernel = torch.Tensor([*(x[0].shape[2:])])//torch.Tensor(list((m.output_size,))).squeeze() |
|
kernel_ops = torch.prod(kernel) |
|
num_elements = y.numel() |
|
total_ops = kernel_ops * num_elements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_avgpool(m, x, y): |
|
total_add = torch.prod(torch.Tensor([m.kernel_size])) |
|
total_div = 1 |
|
kernel_ops = total_add + total_div |
|
num_elements = y.numel() |
|
total_ops = kernel_ops * num_elements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_adap_avgpool(m, x, y): |
|
kernel = torch.Tensor([*(x[0].shape[2:])])//torch.Tensor(list((m.output_size,))).squeeze() |
|
total_add = torch.prod(kernel) |
|
total_div = 1 |
|
kernel_ops = total_add + total_div |
|
num_elements = y.numel() |
|
total_ops = kernel_ops * num_elements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_linear(m, x, y): |
|
|
|
total_mul = m.in_features |
|
total_add = m.in_features - 1 |
|
num_elements = y.numel() |
|
total_ops = (total_mul + total_add) * num_elements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_LastLevelMaxPool(m, x, y): |
|
num_elements = y[-1].numel() |
|
total_ops = num_elements |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
def count_ROIAlign(m, x, y): |
|
num_elements = y.numel() |
|
total_ops = num_elements*4 |
|
m.total_ops = torch.Tensor([int(total_ops)]) |
|
|
|
|
|
register_hooks = { |
|
Scale: None, |
|
Conv2d: count_conv2d, |
|
nn.Conv2d: count_conv2d, |
|
ModulatedDeformConv: count_conv2d, |
|
StdConv2d: count_conv2d, |
|
|
|
nn.BatchNorm1d: count_bn, |
|
nn.BatchNorm2d: count_bn, |
|
nn.BatchNorm3d: count_bn, |
|
FrozenBatchNorm2d: count_bn, |
|
nn.GroupNorm: count_bn, |
|
NaiveSyncBatchNorm2d: count_bn, |
|
|
|
nn.ReLU: count_relu, |
|
nn.ReLU6: count_relu, |
|
swish: None, |
|
|
|
nn.ConstantPad2d: None, |
|
SPPLayer: count_LastLevelMaxPool, |
|
LastLevelMaxPool: count_LastLevelMaxPool, |
|
nn.MaxPool1d: count_maxpool, |
|
nn.MaxPool2d: count_maxpool, |
|
nn.MaxPool3d: count_maxpool, |
|
nn.AdaptiveMaxPool1d: count_adap_maxpool, |
|
nn.AdaptiveMaxPool2d: count_adap_maxpool, |
|
nn.AdaptiveMaxPool3d: count_adap_maxpool, |
|
nn.AvgPool1d: count_avgpool, |
|
nn.AvgPool2d: count_avgpool, |
|
nn.AvgPool3d: count_avgpool, |
|
nn.AdaptiveAvgPool1d: count_adap_avgpool, |
|
nn.AdaptiveAvgPool2d: count_adap_avgpool, |
|
nn.AdaptiveAvgPool3d: count_adap_avgpool, |
|
nn.Linear: count_linear, |
|
nn.Upsample: None, |
|
nn.Dropout: None, |
|
nn.Sigmoid: None, |
|
DropBlock2D: None, |
|
|
|
ROIAlign: count_ROIAlign, |
|
RPNPostProcessor: None, |
|
PostProcessor: None, |
|
BufferList: None, |
|
RetinaPostProcessor: None, |
|
FCOSPostProcessor: None, |
|
ATSSPostProcessor: None, |
|
} |