|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import pdb |
|
import math |
|
from maskrcnn_benchmark.modeling.utils import cat, concat_box_prediction_layers, permute_and_flatten |
|
from timm.models.layers import DropPath |
|
|
|
from transformers.activations import ACT2FN |
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
class FeatureResizer(nn.Module): |
|
""" |
|
This class takes as input a set of embeddings of dimension C1 and outputs a set of |
|
embedding of dimension C2, after a linear transformation, dropout and normalization (LN). |
|
""" |
|
|
|
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): |
|
super().__init__() |
|
self.do_ln = do_ln |
|
|
|
self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) |
|
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, encoder_features): |
|
x = self.fc(encoder_features) |
|
if self.do_ln: |
|
x = self.layer_norm(x) |
|
output = self.dropout(x) |
|
return output |
|
|
|
|
|
def _make_conv(input_dim, output_dim, k, stride=1): |
|
pad = (k - 1) // 2 |
|
return nn.Sequential( |
|
nn.Conv2d(input_dim, output_dim, (k, k), padding=(pad, pad), stride=(stride, stride)), |
|
nn.BatchNorm2d(output_dim), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
def _make_mlp(input_dim, output_dim, drop): |
|
return nn.Sequential(nn.Linear(input_dim, output_dim), |
|
nn.BatchNorm1d(output_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(drop), |
|
nn.Linear(output_dim, output_dim), |
|
nn.BatchNorm1d(output_dim), |
|
nn.ReLU(inplace=True)) |
|
|
|
|
|
def _make_coord(batch, height, width): |
|
|
|
xv, yv = torch.meshgrid([torch.arange(0, height), torch.arange(0, width)]) |
|
xv_min = (xv.float() * 2 - width) / width |
|
yv_min = (yv.float() * 2 - height) / height |
|
xv_max = ((xv + 1).float() * 2 - width) / width |
|
yv_max = ((yv + 1).float() * 2 - height) / height |
|
xv_ctr = (xv_min + xv_max) / 2 |
|
yv_ctr = (yv_min + yv_max) / 2 |
|
hmap = torch.ones(height, width) * (1. / height) |
|
wmap = torch.ones(height, width) * (1. / width) |
|
coord = torch.autograd.Variable(torch.cat([xv_min.unsqueeze(0), yv_min.unsqueeze(0), \ |
|
xv_max.unsqueeze(0), yv_max.unsqueeze(0), \ |
|
xv_ctr.unsqueeze(0), yv_ctr.unsqueeze(0), \ |
|
hmap.unsqueeze(0), wmap.unsqueeze(0)], dim=0)) |
|
coord = coord.unsqueeze(0).repeat(batch, 1, 1, 1) |
|
return coord |
|
|
|
|
|
def l1norm(X, dim, eps=1e-8): |
|
"""L1-normalize columns of X |
|
""" |
|
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps |
|
X = torch.div(X, norm) |
|
return X |
|
|
|
|
|
def l2norm(X, dim, eps=1e-8): |
|
"""L2-normalize columns of X |
|
""" |
|
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps |
|
X = torch.div(X, norm) |
|
return X |
|
|
|
|
|
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8): |
|
""" |
|
query: (n_context, queryL, d) |
|
context: (n_context, sourceL, d) |
|
""" |
|
batch_size_q, queryL = query.size(0), query.size(1) |
|
batch_size, sourceL = context.size(0), context.size(1) |
|
|
|
|
|
|
|
queryT = torch.transpose(query, 1, 2) |
|
|
|
|
|
|
|
attn = torch.bmm(context, queryT) |
|
if raw_feature_norm == "softmax": |
|
|
|
attn = attn.view(batch_size * sourceL, queryL) |
|
attn = nn.Softmax()(attn) |
|
|
|
attn = attn.view(batch_size, sourceL, queryL) |
|
elif raw_feature_norm == "l2norm": |
|
attn = l2norm(attn, 2) |
|
elif raw_feature_norm == "clipped_l2norm": |
|
attn = nn.LeakyReLU(0.1)(attn) |
|
attn = l2norm(attn, 2) |
|
else: |
|
raise ValueError("unknown first norm type:", raw_feature_norm) |
|
|
|
attn = torch.transpose(attn, 1, 2).contiguous() |
|
|
|
attn = attn.view(batch_size * queryL, sourceL) |
|
attn = nn.Softmax()(attn * smooth) |
|
|
|
attn = attn.view(batch_size, queryL, sourceL) |
|
|
|
attnT = torch.transpose(attn, 1, 2).contiguous() |
|
|
|
|
|
contextT = torch.transpose(context, 1, 2) |
|
|
|
|
|
weightedContext = torch.bmm(contextT, attnT) |
|
|
|
weightedContext = torch.transpose(weightedContext, 1, 2) |
|
|
|
return weightedContext, attnT |
|
|
|
|
|
class BiMultiHeadAttention(nn.Module): |
|
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None): |
|
super(BiMultiHeadAttention, self).__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
self.v_dim = v_dim |
|
self.l_dim = l_dim |
|
|
|
assert ( |
|
self.head_dim * self.num_heads == self.embed_dim |
|
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." |
|
self.scale = self.head_dim ** (-0.5) |
|
self.dropout = dropout |
|
|
|
self.v_proj = nn.Linear(self.v_dim, self.embed_dim) |
|
self.l_proj = nn.Linear(self.l_dim, self.embed_dim) |
|
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim) |
|
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim) |
|
|
|
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim) |
|
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim) |
|
|
|
self.stable_softmax_2d = cfg.MODEL.DYHEAD.FUSE_CONFIG.STABLE_SOFTMAX_2D |
|
self.clamp_min_for_underflow = cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MIN_FOR_UNDERFLOW |
|
self.clamp_max_for_overflow = cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MAX_FOR_OVERFLOW |
|
|
|
self._reset_parameters() |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _reset_parameters(self): |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
self.v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.l_proj.weight) |
|
self.l_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.values_v_proj.weight) |
|
self.values_v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.values_l_proj.weight) |
|
self.values_l_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.out_v_proj.weight) |
|
self.out_v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.out_l_proj.weight) |
|
self.out_l_proj.bias.data.fill_(0) |
|
|
|
def forward(self, v, l, attention_mask_l=None): |
|
bsz, tgt_len, embed_dim = v.size() |
|
|
|
query_states = self.v_proj(v) * self.scale |
|
key_states = self._shape(self.l_proj(l), -1, bsz) |
|
value_v_states = self._shape(self.values_v_proj(v), -1, bsz) |
|
value_l_states = self._shape(self.values_l_proj(l), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_v_states = value_v_states.view(*proj_shape) |
|
value_l_states = value_l_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" |
|
) |
|
|
|
|
|
|
|
if self.stable_softmax_2d: |
|
attn_weights = attn_weights - attn_weights.max() |
|
|
|
if self.clamp_min_for_underflow: |
|
attn_weights = torch.clamp(attn_weights, min=-50000) |
|
if self.clamp_max_for_overflow: |
|
attn_weights = torch.clamp(attn_weights, max=50000) |
|
|
|
attn_weights_T = attn_weights.transpose(1, 2) |
|
attn_weights_l = (attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[ |
|
0]) |
|
if self.clamp_min_for_underflow: |
|
attn_weights_l = torch.clamp(attn_weights_l, min=-50000) |
|
if self.clamp_max_for_overflow: |
|
attn_weights_l = torch.clamp(attn_weights_l, max=50000) |
|
|
|
attn_weights_l = attn_weights_l.softmax(dim=-1) |
|
|
|
if attention_mask_l is not None: |
|
assert (attention_mask_l.dim() == 2) |
|
attention_mask = attention_mask_l.unsqueeze(1).unsqueeze(1) |
|
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len) |
|
attention_mask = attention_mask.masked_fill(attention_mask == 0, -9e15) |
|
|
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights_v = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training) |
|
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training) |
|
|
|
attn_output_v = torch.bmm(attn_probs_v, value_l_states) |
|
attn_output_l = torch.bmm(attn_probs_l, value_v_states) |
|
|
|
|
|
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}" |
|
) |
|
|
|
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}" |
|
) |
|
|
|
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output_v = attn_output_v.transpose(1, 2) |
|
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim) |
|
attn_output_l = attn_output_l.transpose(1, 2) |
|
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim) |
|
|
|
attn_output_v = self.out_v_proj(attn_output_v) |
|
attn_output_l = self.out_l_proj(attn_output_l) |
|
|
|
return attn_output_v, attn_output_l |
|
|
|
|
|
|
|
class BiAttentionBlock(nn.Module): |
|
def __init__(self, v_dim, l_dim, embed_dim, num_heads, hidden_dim=None, dropout=0.1, |
|
drop_path=.0, init_values=1e-4, cfg=None): |
|
""" |
|
Inputs: |
|
embed_dim - Dimensionality of input and attention feature vectors |
|
hidden_dim - Dimensionality of hidden layer in feed-forward network |
|
(usually 2-4x larger than embed_dim) |
|
num_heads - Number of heads to use in the Multi-Head Attention block |
|
dropout - Amount of dropout to apply in the feed-forward network |
|
""" |
|
super(BiAttentionBlock, self).__init__() |
|
|
|
|
|
self.layer_norm_v = nn.LayerNorm(v_dim) |
|
self.layer_norm_l = nn.LayerNorm(l_dim) |
|
self.attn = BiMultiHeadAttention(v_dim=v_dim, |
|
l_dim=l_dim, |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
dropout=dropout, |
|
cfg=cfg) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) |
|
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) |
|
|
|
def forward(self, v, l, attention_mask_l=None, dummy_tensor=None): |
|
v = self.layer_norm_v(v) |
|
l = self.layer_norm_l(l) |
|
delta_v, delta_l = self.attn(v, l, attention_mask_l=attention_mask_l) |
|
|
|
v = v + self.drop_path(self.gamma_v * delta_v) |
|
l = l + self.drop_path(self.gamma_l * delta_l) |
|
return v, l |
|
|
|
class BiAttentionBlockForCheckpoint(nn.Module): |
|
def __init__(self, v_dim, l_dim, embed_dim, num_heads, hidden_dim=None, dropout=0.1, |
|
drop_path=.0, init_values=1e-4, cfg=None): |
|
""" |
|
Inputs: |
|
embed_dim - Dimensionality of input and attention feature vectors |
|
hidden_dim - Dimensionality of hidden layer in feed-forward network |
|
(usually 2-4x larger than embed_dim) |
|
num_heads - Number of heads to use in the Multi-Head Attention block |
|
dropout - Amount of dropout to apply in the feed-forward network |
|
""" |
|
super(BiAttentionBlockForCheckpoint, self).__init__() |
|
|
|
|
|
self.layer_norm_v = nn.LayerNorm(v_dim) |
|
self.layer_norm_l = nn.LayerNorm(l_dim) |
|
self.attn = BiMultiHeadAttention(v_dim=v_dim, |
|
l_dim=l_dim, |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
dropout=dropout, |
|
cfg=cfg) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) |
|
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) |
|
|
|
self.cfg = cfg |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL: |
|
if not self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: |
|
self.shrink_lang = FeatureResizer(l_dim * 5, l_dim, 0.1) |
|
|
|
def forward(self, q0, q1, q2, q3, q4, l, attention_mask_l=None, dummy_tensor=None): |
|
|
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL: |
|
visu_feat = [] |
|
lang_feat = [] |
|
for ii, feat in enumerate([q0, q1, q2, q3, q4]): |
|
bs, _, h, w = feat.shape |
|
q = feat.flatten(2).transpose(1, 2) |
|
|
|
new_v, new_l = self.single_attention_call(q, l, attention_mask_l=attention_mask_l) |
|
new_v = new_v.transpose(1, 2).contiguous().view(bs, -1, h, w) |
|
lang_feat.append(new_l) |
|
visu_feat.append(new_v) |
|
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: |
|
pass |
|
else: |
|
lang_feat = self.shrink_lang(torch.cat(lang_feat, dim = -1)) |
|
lang_feat = [lang_feat, None, None, None, None] |
|
else: |
|
visu_feat = [] |
|
size_per_level, visual_features_flatten = [], [] |
|
for ii, feat_per_level in enumerate([q0, q1, q2, q3, q4]): |
|
bs, c, h, w = feat_per_level.shape |
|
size_per_level.append([h, w]) |
|
feat = permute_and_flatten(feat_per_level, bs, 1, c, h, w) |
|
visual_features_flatten.append(feat) |
|
visual_features_flatten = cat(visual_features_flatten, dim=1) |
|
new_v, new_l = self.single_attention_call(visual_features_flatten, l, attention_mask_l=attention_mask_l) |
|
|
|
new_v = new_v.transpose(1, 2).contiguous() |
|
|
|
start = 0 |
|
for (h, w) in size_per_level: |
|
new_v_per_level = new_v[:, :, start:start + h * w].view(bs, -1, h, w).contiguous() |
|
visu_feat.append(new_v_per_level) |
|
start += h * w |
|
|
|
lang_feat = [new_l, None, None, None, None] |
|
|
|
return visu_feat[0], visu_feat[1], visu_feat[2], visu_feat[3], visu_feat[4], lang_feat[0], lang_feat[1], lang_feat[2], lang_feat[3], lang_feat[4] |
|
|
|
|
|
def single_attention_call(self, v, l, attention_mask_l=None, dummy_tensor=None): |
|
v = self.layer_norm_v(v) |
|
l = self.layer_norm_l(l) |
|
delta_v, delta_l = self.attn(v, l, attention_mask_l=attention_mask_l) |
|
|
|
v = v + self.drop_path(self.gamma_v * delta_v) |
|
l = l + self.drop_path(self.gamma_l * delta_l) |
|
return v, l |
|
|
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
""" |
|
Multi-head attention module for both image and text |
|
""" |
|
|
|
def __init__(self, q_dim, k_dim, embed_dim, num_heads, dropout=0.1, |
|
clamp_min_for_underflow = False, clamp_max_for_overflow = False): |
|
super(MultiHeadAttention, self).__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
self.q_dim = q_dim |
|
self.k_dim = k_dim |
|
|
|
assert ( |
|
self.head_dim * self.num_heads == self.embed_dim |
|
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." |
|
self.scale = self.head_dim ** (-0.5) |
|
self.dropout = dropout |
|
|
|
self.q_proj = nn.Linear(self.q_dim, self.embed_dim) |
|
self.k_proj = nn.Linear(self.k_dim, self.embed_dim) |
|
self.v_proj = nn.Linear(self.k_dim, self.embed_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.q_dim) |
|
self.clamp_min_for_underflow = clamp_min_for_underflow |
|
self.clamp_max_for_overflow = clamp_max_for_overflow |
|
|
|
self._reset_parameters() |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _reset_parameters(self): |
|
nn.init.xavier_uniform_(self.q_proj.weight) |
|
self.q_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.k_proj.weight) |
|
self.k_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
self.v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
self.out_proj.bias.data.fill_(0) |
|
|
|
def forward(self, q, k, v, attention_mask=None, return_attention=False): |
|
bsz, tgt_len, embed_dim = q.size() |
|
|
|
query_states = self.q_proj(q) * self.scale |
|
key_states = self._shape(self.k_proj(k), -1, bsz) |
|
value_states = self._shape(self.v_proj(v), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" |
|
) |
|
|
|
if self.clamp_min_for_underflow: |
|
attn_weights = torch.clamp(attn_weights, min=-50000) |
|
if self.clamp_max_for_overflow: |
|
attn_weights = torch.clamp(attn_weights, max=50000) |
|
|
|
if attention_mask is not None: |
|
|
|
assert (attention_mask.dim() == 2) |
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) |
|
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len) |
|
attention_mask = attention_mask.masked_fill(attention_mask == 0, -9e15) |
|
|
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if return_attention: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class AttentionMLP(nn.Module): |
|
def __init__(self, q_dim, hidden_dim, dropout=0.1): |
|
super(AttentionMLP, self).__init__() |
|
self.hidden_dim = hidden_dim |
|
self.activation_fn = nn.GELU() |
|
self.fc1 = nn.Linear(q_dim, hidden_dim) |
|
self.fc2 = nn.Linear(hidden_dim, q_dim) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class AttentionT2I(nn.Module): |
|
def __init__(self, q_dim, k_dim, embed_dim, num_heads, hidden_dim=None, dropout=0.1, |
|
drop_path=.0, init_values=1e-4, mode="i2t", use_layer_scale = False, |
|
clamp_min_for_underflow = False, clamp_max_for_overflow = False): |
|
""" |
|
Inputs: |
|
embed_dim - Dimensionality of input and attention feature vectors |
|
hidden_dim - Dimensionality of hidden layer in feed-forward network |
|
(usually 2-4x larger than embed_dim) |
|
num_heads - Number of heads to use in the Multi-Head Attention block |
|
dropout - Amount of dropout to apply in the feed-forward network |
|
""" |
|
super(AttentionT2I, self).__init__() |
|
|
|
|
|
self.layer_norm_q_1 = nn.LayerNorm(q_dim) |
|
self.layer_norm_k_1 = nn.LayerNorm(k_dim) |
|
self.attn = MultiHeadAttention(q_dim=q_dim, |
|
k_dim=k_dim, |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
clamp_min_for_underflow=clamp_min_for_underflow, |
|
clamp_max_for_overflow=clamp_max_for_overflow) |
|
self.mode = mode |
|
|
|
|
|
self.use_layer_scale = use_layer_scale |
|
if self.use_layer_scale: |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.gamma = nn.Parameter(init_values * torch.ones((q_dim)), requires_grad=True) |
|
|
|
|
|
def forward(self, q0, q1, q2, q3, q4, k, v, attention_mask, dummy_arg=None): |
|
qs = [] |
|
for q_index, q in enumerate([q0, q1, q2, q3, q4]): |
|
bs, _, h, w = q.shape |
|
|
|
q = q.flatten(2).transpose(1, 2) |
|
q = self.layer_norm_q_1(q) |
|
k, v = self.layer_norm_k_1(k), self.layer_norm_k_1(v) |
|
delta_q = self.attn(q, k, v, attention_mask=attention_mask)[0] |
|
if self.use_layer_scale: |
|
q = q + self.drop_path(self.gamma * delta_q) |
|
else: |
|
q = q + delta_q |
|
q = q.transpose(1, 2).contiguous().view(bs, -1, h, w) |
|
qs.append(q) |
|
|
|
|
|
return qs[0], qs[1], qs[2], qs[3], qs[4] |
|
|