|
|
|
from collections import defaultdict |
|
from collections import deque |
|
|
|
import torch |
|
import time |
|
from datetime import datetime |
|
from .comm import is_main_process |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20): |
|
self.deque = deque(maxlen=window_size) |
|
|
|
self.total = 0.0 |
|
self.count = 0 |
|
|
|
def update(self, value): |
|
self.deque.append(value) |
|
|
|
self.count += 1 |
|
if value != value: |
|
value = 0 |
|
self.total += value |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {:.4f} ({:.4f})".format(name, meter.median, meter.global_avg) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
|
|
|
|
class TensorboardLogger(MetricLogger): |
|
def __init__(self, |
|
log_dir, |
|
start_iter=0, |
|
delimiter='\t' |
|
): |
|
super(TensorboardLogger, self).__init__(delimiter) |
|
self.iteration = start_iter |
|
self.writer = self._get_tensorboard_writer(log_dir) |
|
|
|
@staticmethod |
|
def _get_tensorboard_writer(log_dir): |
|
try: |
|
from tensorboardX import SummaryWriter |
|
except ImportError: |
|
raise ImportError( |
|
'To use tensorboard please install tensorboardX ' |
|
'[ pip install tensorflow tensorboardX ].' |
|
) |
|
|
|
if is_main_process(): |
|
|
|
tb_logger = SummaryWriter('{}'.format(log_dir)) |
|
return tb_logger |
|
else: |
|
return None |
|
|
|
def update(self, **kwargs): |
|
super(TensorboardLogger, self).update(**kwargs) |
|
if self.writer: |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.writer.add_scalar(k, v, self.iteration) |
|
|
|
self.iteration += 1 |
|
|