|
|
|
from collections import OrderedDict, defaultdict |
|
import logging |
|
import math |
|
import torch |
|
|
|
from maskrcnn_benchmark.utils.imports import import_file |
|
|
|
def resize_2d(posemb, shape_new): |
|
|
|
|
|
ntok_new = shape_new[0] |
|
gs_old = int(math.sqrt(len(posemb))) |
|
gs_new = int(math.sqrt(ntok_new)) |
|
posemb_grid = posemb.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) |
|
posemb_grid = torch.nn.functional.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear') |
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(gs_new * gs_new, -1) |
|
return posemb_grid |
|
|
|
def align_and_update_state_dicts(model_state_dict, loaded_state_dict, reshape_keys=['pos_bias_table'], use_weightmap=False): |
|
""" |
|
Strategy: suppose that the models that we will create will have prefixes appended |
|
to each of its keys, for example due to an extra level of nesting that the original |
|
pre-trained weights from ImageNet won't contain. For example, model.state_dict() |
|
might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains |
|
res2.conv1.weight. We thus want to match both parameters together. |
|
For that, we look for each model weight, look among all loaded keys if there is one |
|
that is a suffix of the current weight name, and use it if that's the case. |
|
If multiple matches exist, take the one with longest size |
|
of the corresponding name. For example, for the same model as before, the pretrained |
|
weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, |
|
we want to match backbone[0].body.conv1.weight to conv1.weight, and |
|
backbone[0].body.res2.conv1.weight to res2.conv1.weight. |
|
""" |
|
current_keys = sorted(list(model_state_dict.keys())) |
|
loaded_keys = sorted(list(loaded_state_dict.keys())) |
|
|
|
|
|
match_matrix = [ |
|
len(j) if i.endswith(j) else 0 for i in current_keys for j in loaded_keys |
|
] |
|
match_matrix = torch.as_tensor(match_matrix).view( |
|
len(current_keys), len(loaded_keys) |
|
) |
|
max_match_size, idxs = match_matrix.max(1) |
|
|
|
idxs[max_match_size == 0] = -1 |
|
|
|
matched_keys = [] |
|
|
|
max_size = max([len(key) for key in current_keys]) if current_keys else 1 |
|
max_size_loaded = max([len(key) for key in loaded_keys]) if loaded_keys else 1 |
|
log_str_template = "{: <{}} loaded from {: <{}} of shape {}" |
|
logger = logging.getLogger(__name__) |
|
for idx_new, idx_old in enumerate(idxs.tolist()): |
|
if idx_old == -1: |
|
continue |
|
key = current_keys[idx_new] |
|
key_old = loaded_keys[idx_old] |
|
if model_state_dict[key].shape != loaded_state_dict[key_old].shape: |
|
if any([k in key_old for k in reshape_keys]): |
|
new_shape = model_state_dict[key].shape |
|
logger.warning('Reshaping {} -> {}. \n'.format(key_old, key)) |
|
model_state_dict[key] = resize_2d(loaded_state_dict[key_old], new_shape) |
|
elif use_weightmap and 'cls_logits' in key: |
|
coco_in_objects365_inds = [ |
|
227, 26, 55, 202, 2, 44, 338, 346, 32, 336, 118, 299, 218, |
|
25, 361, 59, 95, 161, 278, 82, 110, 22, 364, 134, 9, 350, |
|
152, 323, 304, 130, 285, 289, 16, 172, 17, 18, 283, 305, |
|
321, 35, 362, 88, 127, 174, 292, 37, 11, 6, 267, 212, 41, |
|
58, 162, 237, 98, 48, 63, 81, 247, 23, 94, 326, 349, 178, |
|
203, 259, 171, 60, 198, 213, 325, 282, 258, 33, 71, 353, |
|
273, 318, 148, 330 |
|
] |
|
logger.info("Use coco_in_objects365_inds labelmap for COCO detection because of size mis-match, " |
|
"Reshaping {} -> {}. \n".format(key_old, key)) |
|
new_shape = model_state_dict[key].shape |
|
assert new_shape[0] == len(coco_in_objects365_inds) |
|
weight_inds_old = torch.as_tensor(coco_in_objects365_inds).to(loaded_state_dict[key_old].device) |
|
model_state_dict[key] = loaded_state_dict[key_old][weight_inds_old].to(model_state_dict[key].device) |
|
else: |
|
logger.info('Skip due to size mismatch: {} -> {}. \n'.format(key_old, key)) |
|
continue |
|
else: |
|
model_state_dict[key] = loaded_state_dict[key_old] |
|
matched_keys.append(key) |
|
logger.info( |
|
log_str_template.format( |
|
key, |
|
max_size, |
|
key_old, |
|
max_size_loaded, |
|
tuple(loaded_state_dict[key_old].shape), |
|
) |
|
) |
|
missing_keys = set(current_keys)-set(matched_keys) |
|
if len(missing_keys): |
|
groups = _group_checkpoint_keys(missing_keys) |
|
msg_per_group = sorted(k + _group_to_str(v) for k, v in groups.items()) |
|
msg = '\n'.join(sorted(msg_per_group)) |
|
logger.warning('Some layers unloaded with pre-trained weight: \n' + msg) |
|
|
|
def strip_prefix_if_present(state_dict, prefix): |
|
keys = sorted(state_dict.keys()) |
|
if not all(key.startswith(prefix) for key in keys): |
|
return state_dict |
|
stripped_state_dict = OrderedDict() |
|
for key, value in state_dict.items(): |
|
stripped_state_dict[key.replace(prefix, "", 1)] = value |
|
return stripped_state_dict |
|
|
|
def load_state_dict(model, loaded_state_dict): |
|
model_state_dict = model.state_dict() |
|
|
|
|
|
|
|
loaded_state_dict = strip_prefix_if_present(loaded_state_dict, prefix="module.") |
|
align_and_update_state_dicts(model_state_dict, loaded_state_dict) |
|
|
|
|
|
model.load_state_dict(model_state_dict) |
|
|
|
def _group_checkpoint_keys(keys): |
|
""" |
|
Group keys based on common prefixes. A prefix is the string up to the final |
|
"." in each key. |
|
Args: |
|
keys (list[str]): list of parameter names, i.e. keys in the model |
|
checkpoint dict. |
|
Returns: |
|
dict[list]: keys with common prefixes are grouped into lists. |
|
""" |
|
groups = defaultdict(list) |
|
for key in keys: |
|
pos = key.rfind(".") |
|
if pos >= 0: |
|
head, tail = key[:pos], [key[pos + 1 :]] |
|
else: |
|
head, tail = key, [] |
|
groups[head].extend(tail) |
|
return groups |
|
|
|
def _group_to_str(group): |
|
""" |
|
Format a group of parameter name suffixes into a loggable string. |
|
Args: |
|
group (list[str]): list of parameter name suffixes. |
|
Returns: |
|
str: formated string. |
|
""" |
|
if len(group) == 0: |
|
return "" |
|
|
|
if len(group) == 1: |
|
return "." + group[0] |
|
|
|
return ".{" + ", ".join(sorted(group)) + "}" |