|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from collections import OrderedDict |
|
|
|
def _remove_bn_statics(state_dict): |
|
layer_keys = sorted(state_dict.keys()) |
|
remove_list = [] |
|
for key in layer_keys: |
|
if 'running_mean' in key or 'running_var' in key or 'num_batches_tracked' in key: |
|
remove_list.append(key) |
|
for key in remove_list: |
|
del state_dict[key] |
|
return state_dict |
|
|
|
def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg): |
|
import re |
|
layer_keys = sorted(state_dict.keys()) |
|
for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1): |
|
if not stage_with_dcn: |
|
continue |
|
for old_key in layer_keys: |
|
pattern = ".*layer{}.*conv2.*".format(ix) |
|
r = re.match(pattern, old_key) |
|
if r is None: |
|
continue |
|
for param in ["weight", "bias"]: |
|
if old_key.find(param) is -1: |
|
continue |
|
if 'unit01' in old_key: |
|
continue |
|
new_key = old_key.replace( |
|
"conv2.{}".format(param), "conv2.conv.{}".format(param) |
|
) |
|
print("pattern: {}, old_key: {}, new_key: {}".format( |
|
pattern, old_key, new_key |
|
)) |
|
state_dict[new_key] = state_dict[old_key] |
|
del state_dict[old_key] |
|
return state_dict |
|
|
|
|
|
def load_pretrain_format(cfg, f): |
|
model = torch.load(f) |
|
model = _remove_bn_statics(model) |
|
model = _rename_conv_weights_for_deformable_conv_layers(model, cfg) |
|
|
|
return dict(model=model) |
|
|