|
import torch |
|
import maskrcnn_benchmark.utils.dist as dist |
|
|
|
|
|
def normalized_positive_map(positive_map): |
|
positive_map = positive_map.float() |
|
positive_map_num_pos = positive_map.sum(2) |
|
positive_map_num_pos[positive_map_num_pos == 0] = 1e-6 |
|
positive_map = positive_map / positive_map_num_pos.unsqueeze(-1) |
|
return positive_map |
|
|
|
|
|
def pad_tensor_given_dim_length(tensor, dim, length, padding_value=0, batch_first=True): |
|
new_size = list(tensor.size()[:dim]) + [length] + list(tensor.size()[dim + 1:]) |
|
out_tensor = tensor.data.new(*new_size).fill_(padding_value) |
|
if batch_first: |
|
out_tensor[:, :tensor.size(1), ...] = tensor |
|
else: |
|
out_tensor[:tensor.size(0), ...] = tensor |
|
return out_tensor |
|
|
|
|
|
def pad_random_negative_tensor_given_length(positive_tensor, negative_padding_tensor, length=None): |
|
assert positive_tensor.shape[0] + negative_padding_tensor.shape[0] == length |
|
return torch.cat((positive_tensor, negative_padding_tensor), dim=0) |
|
|
|
|
|
def gather_tensors(tensor): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
*** Warning ***: torch.distributed.all_gather has no gradient. |
|
""" |
|
if not dist.is_dist_avail_and_initialized(): |
|
return torch.stack([tensor], dim=0) |
|
|
|
total = dist.get_world_size() |
|
rank = torch.distributed.get_rank() |
|
|
|
|
|
|
|
tensors_gather = [ |
|
torch.zeros_like(tensor) |
|
for _ in range(total) |
|
] |
|
torch.distributed.all_gather(tensors_gather, tensor, async_op=False) |
|
|
|
|
|
tensors_gather[rank] = tensor |
|
output = torch.stack(tensors_gather, dim=0) |
|
return output |
|
|
|
|
|
def convert_to_roi_format(boxes): |
|
concat_boxes = boxes.bbox |
|
device, dtype = concat_boxes.device, concat_boxes.dtype |
|
ids = torch.full((len(boxes), 1), 0, dtype=dtype, device=device) |
|
rois = torch.cat([ids, concat_boxes], dim=1) |
|
return rois |