|
''' |
|
Copyright (C) 2019 Sovrasov V. - All Rights Reserved |
|
* You may use, distribute and modify this code under the |
|
* terms of the MIT license. |
|
* You should have received a copy of the MIT license with |
|
* this file. If not visit https://opensource.org/licenses/MIT |
|
''' |
|
|
|
import sys |
|
from functools import partial |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from maskrcnn_benchmark.layers import * |
|
|
|
def get_model_complexity_info(model, input_res, |
|
print_per_layer_stat=True, |
|
as_strings=True, |
|
input_constructor=None, ost=sys.stdout, |
|
verbose=False, ignore_modules=[], |
|
custom_modules_hooks={}): |
|
assert type(input_res) is tuple |
|
assert len(input_res) >= 1 |
|
assert isinstance(model, nn.Module) |
|
global CUSTOM_MODULES_MAPPING |
|
CUSTOM_MODULES_MAPPING = custom_modules_hooks |
|
flops_model = add_flops_counting_methods(model) |
|
flops_model.eval() |
|
flops_model.start_flops_count(ost=ost, verbose=verbose, |
|
ignore_list=ignore_modules) |
|
if input_constructor: |
|
input = input_constructor(input_res) |
|
_ = flops_model(**input) |
|
else: |
|
try: |
|
batch = torch.ones(()).new_empty((1, *input_res), |
|
dtype=next(flops_model.parameters()).dtype, |
|
device=next(flops_model.parameters()).device) |
|
except StopIteration: |
|
batch = torch.ones(()).new_empty((1, *input_res)) |
|
|
|
_ = flops_model(batch) |
|
|
|
flops_count, params_count = flops_model.compute_average_flops_cost() |
|
if print_per_layer_stat: |
|
print_model_with_flops(flops_model, flops_count, params_count, ost=ost) |
|
flops_model.stop_flops_count() |
|
CUSTOM_MODULES_MAPPING = {} |
|
|
|
if as_strings: |
|
return flops_to_string(flops_count), params_to_string(params_count) |
|
|
|
return flops_count, params_count |
|
|
|
|
|
def flops_to_string(flops, units='GMac', precision=2): |
|
if units is None: |
|
if flops // 10**9 > 0: |
|
return str(round(flops / 10.**9, precision)) + ' GMac' |
|
elif flops // 10**6 > 0: |
|
return str(round(flops / 10.**6, precision)) + ' MMac' |
|
elif flops // 10**3 > 0: |
|
return str(round(flops / 10.**3, precision)) + ' KMac' |
|
else: |
|
return str(flops) + ' Mac' |
|
else: |
|
if units == 'GMac': |
|
return str(round(flops / 10.**9, precision)) + ' ' + units |
|
elif units == 'MMac': |
|
return str(round(flops / 10.**6, precision)) + ' ' + units |
|
elif units == 'KMac': |
|
return str(round(flops / 10.**3, precision)) + ' ' + units |
|
else: |
|
return str(flops) + ' Mac' |
|
|
|
|
|
def params_to_string(params_num, units=None, precision=2): |
|
if units is None: |
|
if params_num // 10 ** 6 > 0: |
|
return str(round(params_num / 10 ** 6, 2)) + ' M' |
|
elif params_num // 10 ** 3: |
|
return str(round(params_num / 10 ** 3, 2)) + ' k' |
|
else: |
|
return str(params_num) |
|
else: |
|
if units == 'M': |
|
return str(round(params_num / 10.**6, precision)) + ' ' + units |
|
elif units == 'K': |
|
return str(round(params_num / 10.**3, precision)) + ' ' + units |
|
else: |
|
return str(params_num) |
|
|
|
|
|
def accumulate_flops(self): |
|
if is_supported_instance(self): |
|
return self.__flops__ |
|
else: |
|
sum = 0 |
|
for m in self.children(): |
|
sum += m.accumulate_flops() |
|
return sum |
|
|
|
|
|
def print_model_with_flops(model, total_flops, total_params, units='GMac', |
|
precision=3, ost=sys.stdout): |
|
|
|
def accumulate_params(self): |
|
if is_supported_instance(self): |
|
return self.__params__ |
|
else: |
|
sum = 0 |
|
for m in self.children(): |
|
sum += m.accumulate_params() |
|
return sum |
|
|
|
def flops_repr(self): |
|
accumulated_params_num = self.accumulate_params() |
|
accumulated_flops_cost = self.accumulate_flops() / model.__batch_counter__ |
|
return ', '.join([params_to_string(accumulated_params_num, |
|
units='M', precision=precision), |
|
'{:.3%} Params'.format(accumulated_params_num / total_params), |
|
flops_to_string(accumulated_flops_cost, |
|
units=units, precision=precision), |
|
'{:.3%} MACs'.format(accumulated_flops_cost / total_flops), |
|
self.original_extra_repr()]) |
|
|
|
def add_extra_repr(m): |
|
m.accumulate_flops = accumulate_flops.__get__(m) |
|
m.accumulate_params = accumulate_params.__get__(m) |
|
flops_extra_repr = flops_repr.__get__(m) |
|
if m.extra_repr != flops_extra_repr: |
|
m.original_extra_repr = m.extra_repr |
|
m.extra_repr = flops_extra_repr |
|
assert m.extra_repr != m.original_extra_repr |
|
|
|
def del_extra_repr(m): |
|
if hasattr(m, 'original_extra_repr'): |
|
m.extra_repr = m.original_extra_repr |
|
del m.original_extra_repr |
|
if hasattr(m, 'accumulate_flops'): |
|
del m.accumulate_flops |
|
|
|
model.apply(add_extra_repr) |
|
print(repr(model), file=ost) |
|
model.apply(del_extra_repr) |
|
|
|
|
|
def get_model_parameters_number(model): |
|
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
return params_num |
|
|
|
|
|
def add_flops_counting_methods(net_main_module): |
|
|
|
|
|
net_main_module.start_flops_count = start_flops_count.__get__(net_main_module) |
|
net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module) |
|
net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module) |
|
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__( |
|
net_main_module) |
|
|
|
net_main_module.reset_flops_count() |
|
|
|
return net_main_module |
|
|
|
|
|
def compute_average_flops_cost(self): |
|
""" |
|
A method that will be available after add_flops_counting_methods() is called |
|
on a desired net object. |
|
|
|
Returns current mean flops consumption per image. |
|
|
|
""" |
|
|
|
for m in self.modules(): |
|
m.accumulate_flops = accumulate_flops.__get__(m) |
|
|
|
flops_sum = self.accumulate_flops() |
|
|
|
for m in self.modules(): |
|
if hasattr(m, 'accumulate_flops'): |
|
del m.accumulate_flops |
|
|
|
params_sum = get_model_parameters_number(self) |
|
return flops_sum / self.__batch_counter__, params_sum |
|
|
|
|
|
def start_flops_count(self, **kwargs): |
|
""" |
|
A method that will be available after add_flops_counting_methods() is called |
|
on a desired net object. |
|
|
|
Activates the computation of mean flops consumption per image. |
|
Call it before you run the network. |
|
|
|
""" |
|
add_batch_counter_hook_function(self) |
|
|
|
seen_types = set() |
|
|
|
def add_flops_counter_hook_function(module, ost, verbose, ignore_list): |
|
if type(module) in ignore_list: |
|
seen_types.add(type(module)) |
|
if is_supported_instance(module): |
|
module.__params__ = 0 |
|
elif is_supported_instance(module): |
|
if hasattr(module, '__flops_handle__'): |
|
return |
|
if type(module) in CUSTOM_MODULES_MAPPING: |
|
handle = module.register_forward_hook( |
|
CUSTOM_MODULES_MAPPING[type(module)]) |
|
elif getattr(module, 'compute_macs', False): |
|
handle = module.register_forward_hook( |
|
module.compute_macs |
|
) |
|
else: |
|
handle = module.register_forward_hook(MODULES_MAPPING[type(module)]) |
|
module.__flops_handle__ = handle |
|
seen_types.add(type(module)) |
|
else: |
|
if verbose and not type(module) in (nn.Sequential, nn.ModuleList) and \ |
|
not type(module) in seen_types: |
|
print('Warning: module ' + type(module).__name__ + |
|
' is treated as a zero-op.', file=ost) |
|
seen_types.add(type(module)) |
|
|
|
self.apply(partial(add_flops_counter_hook_function, **kwargs)) |
|
|
|
|
|
def stop_flops_count(self): |
|
""" |
|
A method that will be available after add_flops_counting_methods() is called |
|
on a desired net object. |
|
|
|
Stops computing the mean flops consumption per image. |
|
Call whenever you want to pause the computation. |
|
|
|
""" |
|
remove_batch_counter_hook_function(self) |
|
self.apply(remove_flops_counter_hook_function) |
|
|
|
|
|
def reset_flops_count(self): |
|
""" |
|
A method that will be available after add_flops_counting_methods() is called |
|
on a desired net object. |
|
|
|
Resets statistics computed so far. |
|
|
|
""" |
|
add_batch_counter_variables_or_reset(self) |
|
self.apply(add_flops_counter_variable_or_reset) |
|
|
|
|
|
|
|
def empty_flops_counter_hook(module, input, output): |
|
module.__flops__ += 0 |
|
|
|
|
|
def upsample_flops_counter_hook(module, input, output): |
|
output_size = output[0] |
|
batch_size = output_size.shape[0] |
|
output_elements_count = batch_size |
|
for val in output_size.shape[1:]: |
|
output_elements_count *= val |
|
module.__flops__ += int(output_elements_count) |
|
|
|
|
|
def relu_flops_counter_hook(module, input, output): |
|
active_elements_count = output.numel() |
|
module.__flops__ += int(active_elements_count) |
|
|
|
|
|
def linear_flops_counter_hook(module, input, output): |
|
input = input[0] |
|
|
|
output_last_dim = output.shape[-1] |
|
bias_flops = output_last_dim if module.bias is not None else 0 |
|
module.__flops__ += int(np.prod(input.shape) * output_last_dim + bias_flops) |
|
|
|
|
|
def pool_flops_counter_hook(module, input, output): |
|
input = input[0] |
|
module.__flops__ += int(np.prod(input.shape)) |
|
|
|
|
|
def bn_flops_counter_hook(module, input, output): |
|
input = input[0] |
|
|
|
batch_flops = np.prod(input.shape) |
|
if module.affine: |
|
batch_flops *= 2 |
|
module.__flops__ += int(batch_flops) |
|
|
|
|
|
def conv_flops_counter_hook(conv_module, input, output): |
|
|
|
input = input[0] |
|
|
|
batch_size = input.shape[0] |
|
output_dims = list(output.shape[2:]) |
|
|
|
kernel_dims = list(conv_module.kernel_size) |
|
in_channels = conv_module.in_channels |
|
out_channels = conv_module.out_channels |
|
groups = conv_module.groups |
|
|
|
filters_per_channel = out_channels // groups |
|
conv_per_position_flops = int(np.prod(kernel_dims)) * \ |
|
in_channels * filters_per_channel |
|
|
|
active_elements_count = batch_size * int(np.prod(output_dims)) |
|
|
|
overall_conv_flops = conv_per_position_flops * active_elements_count |
|
|
|
bias_flops = 0 |
|
|
|
if conv_module.bias is not None: |
|
|
|
bias_flops = out_channels * active_elements_count |
|
|
|
overall_flops = overall_conv_flops + bias_flops |
|
|
|
conv_module.__flops__ += int(overall_flops) |
|
|
|
|
|
def batch_counter_hook(module, input, output): |
|
batch_size = 1 |
|
if len(input) > 0: |
|
|
|
input = input[0] |
|
batch_size = len(input) |
|
else: |
|
pass |
|
print('Warning! No positional inputs found for a module,' |
|
' assuming batch size is 1.') |
|
module.__batch_counter__ += batch_size |
|
|
|
|
|
def rnn_flops(flops, rnn_module, w_ih, w_hh, input_size): |
|
|
|
flops += w_ih.shape[0]*w_ih.shape[1] |
|
|
|
flops += w_hh.shape[0]*w_hh.shape[1] |
|
if isinstance(rnn_module, (nn.RNN, nn.RNNCell)): |
|
|
|
flops += rnn_module.hidden_size |
|
elif isinstance(rnn_module, (nn.GRU, nn.GRUCell)): |
|
|
|
flops += rnn_module.hidden_size |
|
|
|
flops += rnn_module.hidden_size*3 |
|
|
|
flops += rnn_module.hidden_size*3 |
|
elif isinstance(rnn_module, (nn.LSTM, nn.LSTMCell)): |
|
|
|
flops += rnn_module.hidden_size*4 |
|
|
|
flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size |
|
|
|
flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size |
|
return flops |
|
|
|
|
|
def rnn_flops_counter_hook(rnn_module, input, output): |
|
""" |
|
Takes into account batch goes at first position, contrary |
|
to pytorch common rule (but actually it doesn't matter). |
|
IF sigmoid and tanh are made hard, only a comparison FLOPS should be accurate |
|
""" |
|
flops = 0 |
|
|
|
inp = input[0] |
|
batch_size = inp.shape[0] |
|
seq_length = inp.shape[1] |
|
num_layers = rnn_module.num_layers |
|
|
|
for i in range(num_layers): |
|
w_ih = rnn_module.__getattr__('weight_ih_l' + str(i)) |
|
w_hh = rnn_module.__getattr__('weight_hh_l' + str(i)) |
|
if i == 0: |
|
input_size = rnn_module.input_size |
|
else: |
|
input_size = rnn_module.hidden_size |
|
flops = rnn_flops(flops, rnn_module, w_ih, w_hh, input_size) |
|
if rnn_module.bias: |
|
b_ih = rnn_module.__getattr__('bias_ih_l' + str(i)) |
|
b_hh = rnn_module.__getattr__('bias_hh_l' + str(i)) |
|
flops += b_ih.shape[0] + b_hh.shape[0] |
|
|
|
flops *= batch_size |
|
flops *= seq_length |
|
if rnn_module.bidirectional: |
|
flops *= 2 |
|
rnn_module.__flops__ += int(flops) |
|
|
|
|
|
def rnn_cell_flops_counter_hook(rnn_cell_module, input, output): |
|
flops = 0 |
|
inp = input[0] |
|
batch_size = inp.shape[0] |
|
w_ih = rnn_cell_module.__getattr__('weight_ih') |
|
w_hh = rnn_cell_module.__getattr__('weight_hh') |
|
input_size = inp.shape[1] |
|
flops = rnn_flops(flops, rnn_cell_module, w_ih, w_hh, input_size) |
|
if rnn_cell_module.bias: |
|
b_ih = rnn_cell_module.__getattr__('bias_ih') |
|
b_hh = rnn_cell_module.__getattr__('bias_hh') |
|
flops += b_ih.shape[0] + b_hh.shape[0] |
|
|
|
flops *= batch_size |
|
rnn_cell_module.__flops__ += int(flops) |
|
|
|
|
|
def add_batch_counter_variables_or_reset(module): |
|
|
|
module.__batch_counter__ = 0 |
|
|
|
|
|
def add_batch_counter_hook_function(module): |
|
if hasattr(module, '__batch_counter_handle__'): |
|
return |
|
|
|
handle = module.register_forward_hook(batch_counter_hook) |
|
module.__batch_counter_handle__ = handle |
|
|
|
|
|
def remove_batch_counter_hook_function(module): |
|
if hasattr(module, '__batch_counter_handle__'): |
|
module.__batch_counter_handle__.remove() |
|
del module.__batch_counter_handle__ |
|
|
|
|
|
def add_flops_counter_variable_or_reset(module): |
|
if is_supported_instance(module): |
|
if hasattr(module, '__flops__') or hasattr(module, '__params__'): |
|
print('Warning: variables __flops__ or __params__ are already ' |
|
'defined for the module' + type(module).__name__ + |
|
' ptflops can affect your code!') |
|
module.__flops__ = 0 |
|
module.__params__ = get_model_parameters_number(module) |
|
|
|
|
|
CUSTOM_MODULES_MAPPING = {} |
|
|
|
MODULES_MAPPING = { |
|
|
|
nn.Conv1d: conv_flops_counter_hook, |
|
nn.Conv2d: conv_flops_counter_hook, |
|
nn.Conv3d: conv_flops_counter_hook, |
|
Conv2d: conv_flops_counter_hook, |
|
ModulatedDeformConv: conv_flops_counter_hook, |
|
|
|
nn.ReLU: relu_flops_counter_hook, |
|
nn.PReLU: relu_flops_counter_hook, |
|
nn.ELU: relu_flops_counter_hook, |
|
nn.LeakyReLU: relu_flops_counter_hook, |
|
nn.ReLU6: relu_flops_counter_hook, |
|
|
|
nn.MaxPool1d: pool_flops_counter_hook, |
|
nn.AvgPool1d: pool_flops_counter_hook, |
|
nn.AvgPool2d: pool_flops_counter_hook, |
|
nn.MaxPool2d: pool_flops_counter_hook, |
|
nn.MaxPool3d: pool_flops_counter_hook, |
|
nn.AvgPool3d: pool_flops_counter_hook, |
|
nn.AdaptiveMaxPool1d: pool_flops_counter_hook, |
|
nn.AdaptiveAvgPool1d: pool_flops_counter_hook, |
|
nn.AdaptiveMaxPool2d: pool_flops_counter_hook, |
|
nn.AdaptiveAvgPool2d: pool_flops_counter_hook, |
|
nn.AdaptiveMaxPool3d: pool_flops_counter_hook, |
|
nn.AdaptiveAvgPool3d: pool_flops_counter_hook, |
|
|
|
nn.BatchNorm1d: bn_flops_counter_hook, |
|
nn.BatchNorm2d: bn_flops_counter_hook, |
|
nn.BatchNorm3d: bn_flops_counter_hook, |
|
nn.GroupNorm : bn_flops_counter_hook, |
|
|
|
nn.Linear: linear_flops_counter_hook, |
|
|
|
nn.Upsample: upsample_flops_counter_hook, |
|
|
|
nn.ConvTranspose1d: conv_flops_counter_hook, |
|
nn.ConvTranspose2d: conv_flops_counter_hook, |
|
nn.ConvTranspose3d: conv_flops_counter_hook, |
|
ConvTranspose2d: conv_flops_counter_hook, |
|
|
|
nn.RNN: rnn_flops_counter_hook, |
|
nn.GRU: rnn_flops_counter_hook, |
|
nn.LSTM: rnn_flops_counter_hook, |
|
nn.RNNCell: rnn_cell_flops_counter_hook, |
|
nn.LSTMCell: rnn_cell_flops_counter_hook, |
|
nn.GRUCell: rnn_cell_flops_counter_hook |
|
} |
|
|
|
|
|
def is_supported_instance(module): |
|
if type(module) in MODULES_MAPPING or type(module) in CUSTOM_MODULES_MAPPING \ |
|
or getattr(module, 'compute_macs', False): |
|
return True |
|
return False |
|
|
|
|
|
def remove_flops_counter_hook_function(module): |
|
if is_supported_instance(module): |
|
if hasattr(module, '__flops_handle__'): |
|
module.__flops_handle__.remove() |
|
del module.__flops_handle__ |