Commit
·
2880d52
1
Parent(s):
a23ef1a
Upload 6 files
Browse files- analyze.py +31 -0
- dataset.py +115 -0
- dense.py +85 -0
- describe.py +239 -0
- evaluate.py +83 -0
- faces.py +84 -0
analyze.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from CircumSpect.dense import describe_image
|
2 |
+
from CircumSpect.faces import recognize_users
|
3 |
+
import cv2
|
4 |
+
import time
|
5 |
+
|
6 |
+
def analyze_image(cap):
|
7 |
+
users, recognized = recognize_users(cap)
|
8 |
+
|
9 |
+
captions, annotated = describe_image(recognized)
|
10 |
+
|
11 |
+
if users == []:
|
12 |
+
users = "No faces identified"
|
13 |
+
|
14 |
+
if type(users) == list:
|
15 |
+
users = ", ".join(users)
|
16 |
+
|
17 |
+
output = f"""Faces: {users}
|
18 |
+
View description: {", ".join(captions)}"""
|
19 |
+
return output, annotated
|
20 |
+
|
21 |
+
# cap = cv2.VideoCapture(0)
|
22 |
+
# while True:
|
23 |
+
# output, image = analyze_image(cap)
|
24 |
+
# print(output)
|
25 |
+
|
26 |
+
# cv2.imshow("Annotated Image", image)
|
27 |
+
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
28 |
+
# break
|
29 |
+
|
30 |
+
# cap.release()
|
31 |
+
# cv2.destroyAllWindows()
|
dataset.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import h5py
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
+
class DenseCapDataset(Dataset):
|
12 |
+
|
13 |
+
@staticmethod
|
14 |
+
def collate_fn(batch):
|
15 |
+
"""Use in torch.utils.data.DataLoader
|
16 |
+
"""
|
17 |
+
|
18 |
+
return tuple(zip(*batch)) # as tuples instead of stacked tensors
|
19 |
+
|
20 |
+
@staticmethod
|
21 |
+
def get_transform():
|
22 |
+
"""More complicated transform utils in torchvison/references/detection/transforms.py
|
23 |
+
"""
|
24 |
+
|
25 |
+
transform = transforms.Compose([
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
28 |
+
])
|
29 |
+
|
30 |
+
return transform
|
31 |
+
|
32 |
+
def __init__(self, img_dir_root, vg_data_path, look_up_tables_path, dataset_type=None, transform=None):
|
33 |
+
|
34 |
+
assert dataset_type in {None, 'train', 'test', 'val'}
|
35 |
+
|
36 |
+
super(DenseCapDataset, self).__init__()
|
37 |
+
|
38 |
+
self.img_dir_root = img_dir_root
|
39 |
+
self.vg_data_path = vg_data_path
|
40 |
+
self.look_up_tables_path = look_up_tables_path
|
41 |
+
self.dataset_type = dataset_type # if dataset_type is None, all data will be use
|
42 |
+
self.transform = transform
|
43 |
+
|
44 |
+
# === load data here ====
|
45 |
+
|
46 |
+
self.vg_data = h5py.File(vg_data_path, 'r')
|
47 |
+
self.look_up_tables = pickle.load(open(look_up_tables_path, 'rb'))
|
48 |
+
|
49 |
+
def set_dataset_type(self, dataset_type, verbose=True):
|
50 |
+
|
51 |
+
assert dataset_type in {None, 'train', 'test', 'val'}
|
52 |
+
|
53 |
+
if verbose:
|
54 |
+
print('[DenseCapDataset]: {} switch to {}'.format(self.dataset_type, dataset_type))
|
55 |
+
|
56 |
+
self.dataset_type = dataset_type
|
57 |
+
|
58 |
+
def __getitem__(self, idx):
|
59 |
+
|
60 |
+
vg_idx = self.look_up_tables['split'][self.dataset_type][idx] if self.dataset_type else idx
|
61 |
+
|
62 |
+
img_path = os.path.join(self.img_dir_root, self.look_up_tables['idx_to_directory'][vg_idx],
|
63 |
+
self.look_up_tables['idx_to_filename'][vg_idx])
|
64 |
+
|
65 |
+
img = Image.open(img_path).convert("RGB")
|
66 |
+
if self.transform is not None:
|
67 |
+
img = self.transform(img)
|
68 |
+
else:
|
69 |
+
img = transforms.ToTensor()(img)
|
70 |
+
|
71 |
+
first_box_idx = self.vg_data['img_to_first_box'][vg_idx]
|
72 |
+
last_box_idx = self.vg_data['img_to_last_box'][vg_idx]
|
73 |
+
|
74 |
+
boxes = torch.as_tensor(self.vg_data['boxes'][first_box_idx: last_box_idx+1], dtype=torch.float32)
|
75 |
+
caps = torch.as_tensor(self.vg_data['captions'][first_box_idx: last_box_idx+1], dtype=torch.long)
|
76 |
+
caps_len = torch.as_tensor(self.vg_data['lengths'][first_box_idx: last_box_idx+1], dtype=torch.long)
|
77 |
+
|
78 |
+
targets = {
|
79 |
+
'boxes': boxes,
|
80 |
+
'caps': caps,
|
81 |
+
'caps_len': caps_len,
|
82 |
+
}
|
83 |
+
|
84 |
+
info = {
|
85 |
+
'idx': vg_idx,
|
86 |
+
'dir': self.look_up_tables['idx_to_directory'][vg_idx],
|
87 |
+
'file_name': self.look_up_tables['idx_to_filename'][vg_idx]
|
88 |
+
}
|
89 |
+
|
90 |
+
return img, targets, info
|
91 |
+
|
92 |
+
def __len__(self):
|
93 |
+
|
94 |
+
if self.dataset_type:
|
95 |
+
return len(self.look_up_tables['split'][self.dataset_type])
|
96 |
+
else:
|
97 |
+
return len(self.look_up_tables['filename_to_idx'])
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
|
101 |
+
IMG_DIR_ROOT = './data/visual-genome'
|
102 |
+
VG_DATA_PATH = './data/VG-regions.h5'
|
103 |
+
LOOK_UP_TABLES_PATH = './data/VG-regions-dicts.pkl'
|
104 |
+
|
105 |
+
dcd = DenseCapDataset(IMG_DIR_ROOT, VG_DATA_PATH, LOOK_UP_TABLES_PATH)
|
106 |
+
|
107 |
+
print('all', len(dcd))
|
108 |
+
print(dcd[0])
|
109 |
+
|
110 |
+
for data_type in {'train', 'test', 'val'}:
|
111 |
+
|
112 |
+
dcd.set_dataset_type(data_type)
|
113 |
+
|
114 |
+
print(data_type, len(dcd))
|
115 |
+
print(dcd[0])
|
dense.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matplotlib.patches import Rectangle
|
2 |
+
from CircumSpect.describe import process_image
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from PIL import Image
|
5 |
+
import ocrmac
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import cv2
|
9 |
+
import os
|
10 |
+
|
11 |
+
time.sleep(2)
|
12 |
+
|
13 |
+
with open('pwd.txt', 'r') as pwd:
|
14 |
+
folder_location = pwd.read()
|
15 |
+
|
16 |
+
|
17 |
+
def crop_and_save_image(img, box, output_path):
|
18 |
+
|
19 |
+
# Convert box coordinates to integers
|
20 |
+
box = [int(coord) for coord in box]
|
21 |
+
|
22 |
+
# Crop the image to the specified region of interest
|
23 |
+
cropped_img = img[box[1]:box[3], box[0]:box[2]]
|
24 |
+
cv2.imwrite(output_path, cropped_img)
|
25 |
+
|
26 |
+
|
27 |
+
def visualize_result(image_file_path, result):
|
28 |
+
assert isinstance(result, list)
|
29 |
+
|
30 |
+
og_img = cv2.imread(image_file_path)
|
31 |
+
img = cv2.imread(image_file_path)
|
32 |
+
|
33 |
+
captions = []
|
34 |
+
|
35 |
+
for r in result:
|
36 |
+
box = r['box']
|
37 |
+
caption = r['cap']
|
38 |
+
if "<unk>" in caption:
|
39 |
+
crop_and_save_image(og_img, box, "ocr.png")
|
40 |
+
recognized = ocrmac.OCR('Sample Images/Image.jpeg').recognize()
|
41 |
+
caption = caption.replace("<unk>", recognized[0][0])
|
42 |
+
cv2.rectangle(img, (int(box[0]), int(box[1])),
|
43 |
+
(int(box[2]), int(box[3])), (0, 0, 255), 2)
|
44 |
+
cv2.rectangle(img, (int(box[0]), int(box[1])), (int(
|
45 |
+
box[2]), int(box[1])-50), (200, 200, 200), -1)
|
46 |
+
cv2.rectangle(img, (int(box[0]), int(box[1])),
|
47 |
+
(int(box[2]), int(box[1])-50), (0, 0, 0), 2)
|
48 |
+
cv2.putText(img, caption, (int(box[0]), int(
|
49 |
+
box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
|
50 |
+
captions.append(caption)
|
51 |
+
|
52 |
+
cv2.imwrite("output.png", img)
|
53 |
+
|
54 |
+
return captions, img
|
55 |
+
|
56 |
+
|
57 |
+
def describe_image(frame):
|
58 |
+
IMG_FILE_PATH = f'{folder_location}image.png'
|
59 |
+
|
60 |
+
cv2.imwrite(IMG_FILE_PATH, frame)
|
61 |
+
process_image(IMG_FILE_PATH, folder_location)
|
62 |
+
|
63 |
+
RESULT_JSON_PATH = f'{folder_location}CircumSpect/result.json'
|
64 |
+
with open(RESULT_JSON_PATH, 'r') as f:
|
65 |
+
results = json.load(f)
|
66 |
+
|
67 |
+
TO_K = 10
|
68 |
+
assert IMG_FILE_PATH in results.keys()
|
69 |
+
captions, frame = visualize_result(
|
70 |
+
IMG_FILE_PATH, results[IMG_FILE_PATH][:TO_K])
|
71 |
+
|
72 |
+
return captions, frame
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
cap = cv2.VideoCapture(0)
|
76 |
+
time.sleep(2)
|
77 |
+
start = time.time()
|
78 |
+
while True:
|
79 |
+
end = time.time()
|
80 |
+
print(end-start)
|
81 |
+
_, img = cap.read()
|
82 |
+
caption, frame = describe_image(img)
|
83 |
+
cv2.imshow("CircumSpect", frame)
|
84 |
+
cv2.waitKey(1)
|
85 |
+
start = time.time()
|
describe.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import h5py
|
3 |
+
import json
|
4 |
+
import pickle
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
import torchvision.transforms as transforms
|
12 |
+
|
13 |
+
from CircumSpect.model.densecap import densecap_resnet50_fpn
|
14 |
+
|
15 |
+
model = None
|
16 |
+
first_run = True
|
17 |
+
|
18 |
+
def load_model(console_args):
|
19 |
+
|
20 |
+
with open(console_args.config_json, 'r') as f:
|
21 |
+
model_args = json.load(f)
|
22 |
+
|
23 |
+
model = densecap_resnet50_fpn(backbone_pretrained=model_args['backbone_pretrained'],
|
24 |
+
return_features=console_args.extract,
|
25 |
+
feat_size=model_args['feat_size'],
|
26 |
+
hidden_size=model_args['hidden_size'],
|
27 |
+
max_len=model_args['max_len'],
|
28 |
+
emb_size=model_args['emb_size'],
|
29 |
+
rnn_num_layers=model_args['rnn_num_layers'],
|
30 |
+
vocab_size=model_args['vocab_size'],
|
31 |
+
fusion_type=model_args['fusion_type'],
|
32 |
+
box_detections_per_img=console_args.box_per_img)
|
33 |
+
|
34 |
+
checkpoint = torch.load(console_args.model_checkpoint, map_location=torch.device('cpu'))
|
35 |
+
model.load_state_dict(checkpoint['model'])
|
36 |
+
|
37 |
+
if console_args.verbose and 'results_on_val' in checkpoint.keys():
|
38 |
+
print('[INFO]: checkpoint {} loaded'.format(console_args.model_checkpoint))
|
39 |
+
print('[INFO]: correspond performance on val set:')
|
40 |
+
for k, v in checkpoint['results_on_val'].items():
|
41 |
+
if not isinstance(v, dict):
|
42 |
+
print(' {}: {:.3f}'.format(k, v))
|
43 |
+
|
44 |
+
return model
|
45 |
+
|
46 |
+
|
47 |
+
def get_image_path(console_args):
|
48 |
+
|
49 |
+
img_list = []
|
50 |
+
|
51 |
+
if os.path.isdir(console_args.img_path):
|
52 |
+
for file_name in os.listdir(console_args.img_path):
|
53 |
+
img_list.append(os.path.join(console_args.img_path, file_name))
|
54 |
+
else:
|
55 |
+
img_list.append(console_args.img_path)
|
56 |
+
|
57 |
+
return img_list
|
58 |
+
|
59 |
+
|
60 |
+
def img_to_tensor(img_list):
|
61 |
+
|
62 |
+
assert isinstance(img_list, list) and len(img_list) > 0
|
63 |
+
|
64 |
+
img_tensors = []
|
65 |
+
|
66 |
+
for img_path in img_list:
|
67 |
+
|
68 |
+
img = Image.open(img_path).convert("RGB")
|
69 |
+
|
70 |
+
img_tensors.append(transforms.ToTensor()(img))
|
71 |
+
|
72 |
+
return img_tensors
|
73 |
+
|
74 |
+
|
75 |
+
def describe_images(model, img_list, device, console_args):
|
76 |
+
|
77 |
+
assert isinstance(img_list, list)
|
78 |
+
assert isinstance(console_args.batch_size, int) and console_args.batch_size > 0
|
79 |
+
|
80 |
+
all_results = []
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
|
84 |
+
model.to(device)
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
for i in tqdm(range(0, len(img_list), console_args.batch_size), disable=not console_args.verbose):
|
88 |
+
|
89 |
+
image_tensors = img_to_tensor(img_list[i:i+console_args.batch_size])
|
90 |
+
input_ = [t.to(device) for t in image_tensors]
|
91 |
+
|
92 |
+
results = model(input_)
|
93 |
+
|
94 |
+
all_results.extend([{k:v.cpu() for k,v in r.items()} for r in results])
|
95 |
+
|
96 |
+
return all_results
|
97 |
+
|
98 |
+
|
99 |
+
def save_results_to_file(img_list, all_results, console_args):
|
100 |
+
|
101 |
+
with open(os.path.join(console_args.lut_path), 'rb') as f:
|
102 |
+
look_up_tables = pickle.load(f)
|
103 |
+
|
104 |
+
idx_to_token = look_up_tables['idx_to_token']
|
105 |
+
|
106 |
+
results_dict = {}
|
107 |
+
if console_args.extract:
|
108 |
+
total_box = sum(len(r['boxes']) for r in all_results)
|
109 |
+
start_idx = 0
|
110 |
+
img_idx = 0
|
111 |
+
h = h5py.File(os.path.join(console_args.result_dir, 'box_feats.h5'), 'w')
|
112 |
+
h.create_dataset('feats', (total_box, all_results[0]['feats'].shape[1]), dtype=np.float32)
|
113 |
+
h.create_dataset('boxes', (total_box, 4), dtype=np.float32)
|
114 |
+
h.create_dataset('start_idx', (len(img_list),), dtype=np.long)
|
115 |
+
h.create_dataset('end_idx', (len(img_list),), dtype=np.long)
|
116 |
+
|
117 |
+
for img_path, results in zip(img_list, all_results):
|
118 |
+
|
119 |
+
if console_args.verbose:
|
120 |
+
print('[Result] ==== {} ====='.format(img_path))
|
121 |
+
|
122 |
+
results_dict[img_path] = []
|
123 |
+
for box, cap, score in zip(results['boxes'], results['caps'], results['scores']):
|
124 |
+
|
125 |
+
r = {
|
126 |
+
'box': [round(c, 2) for c in box.tolist()],
|
127 |
+
'score': round(score.item(), 2),
|
128 |
+
'cap': ' '.join(idx_to_token[idx] for idx in cap.tolist()
|
129 |
+
if idx_to_token[idx] not in ['<pad>', '<bos>', '<eos>'])
|
130 |
+
}
|
131 |
+
|
132 |
+
if console_args.verbose and r['score'] > 0.9:
|
133 |
+
print(' SCORE {} BOX {}'.format(r['score'], r['box']))
|
134 |
+
print(' CAP {}\n'.format(r['cap']))
|
135 |
+
|
136 |
+
results_dict[img_path].append(r)
|
137 |
+
|
138 |
+
if console_args.extract:
|
139 |
+
box_num = len(results['boxes'])
|
140 |
+
h['feats'][start_idx: start_idx+box_num] = results['feats'].cpu().numpy()
|
141 |
+
h['boxes'][start_idx: start_idx+box_num] = results['boxes'].cpu().numpy()
|
142 |
+
h['start_idx'][img_idx] = start_idx
|
143 |
+
h['end_idx'][img_idx] = start_idx + box_num - 1
|
144 |
+
start_idx += box_num
|
145 |
+
img_idx += 1
|
146 |
+
|
147 |
+
if console_args.extract:
|
148 |
+
h.close()
|
149 |
+
# save order of img to a txt
|
150 |
+
if len(img_list) > 1:
|
151 |
+
with open(os.path.join(console_args.result_dir, 'feat_img_mappings.txt'), 'w') as f:
|
152 |
+
for img_path in img_list:
|
153 |
+
f.writelines(os.path.split(img_path)[1] + '\n')
|
154 |
+
|
155 |
+
if not os.path.exists(console_args.result_dir):
|
156 |
+
os.mkdir(console_args.result_dir)
|
157 |
+
with open(os.path.join(console_args.result_dir, 'result.json'), 'w') as f:
|
158 |
+
json.dump(results_dict, f, indent=2)
|
159 |
+
|
160 |
+
if console_args.verbose:
|
161 |
+
print('[INFO] result save to {}'.format(os.path.join(console_args.result_dir, 'result.json')))
|
162 |
+
if console_args.extract:
|
163 |
+
print('[INFO] feats save to {}'.format(os.path.join(console_args.result_dir, 'box_feats.h5')))
|
164 |
+
print('[INFO] order save to {}'.format(os.path.join(console_args.result_dir, 'feat_img_mappings.txt')))
|
165 |
+
|
166 |
+
|
167 |
+
def validate_box_feat(model, all_results, device, console_args):
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
|
171 |
+
box_describer = model.roi_heads.box_describer
|
172 |
+
box_describer.to(device)
|
173 |
+
box_describer.eval()
|
174 |
+
|
175 |
+
if console_args.verbose:
|
176 |
+
print('[INFO] start validating box features...')
|
177 |
+
for results in tqdm(all_results, disable=not console_args.verbose):
|
178 |
+
|
179 |
+
captions = box_describer(results['feats'].to(device))
|
180 |
+
|
181 |
+
assert (captions.cpu() == results['caps']).all().item(), 'caption mismatch'
|
182 |
+
|
183 |
+
if console_args.verbose:
|
184 |
+
print('[INFO] validate box feat done, no problem')
|
185 |
+
|
186 |
+
|
187 |
+
def main(console_args):
|
188 |
+
global model
|
189 |
+
global first_run
|
190 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.cpu else "cpu")
|
191 |
+
|
192 |
+
# === prepare images ====
|
193 |
+
img_list = get_image_path(console_args)
|
194 |
+
|
195 |
+
# === prepare model ====
|
196 |
+
if first_run:
|
197 |
+
model = load_model(console_args)
|
198 |
+
first_run = False
|
199 |
+
|
200 |
+
# === inference ====
|
201 |
+
all_results = describe_images(model, img_list, device, console_args)
|
202 |
+
|
203 |
+
# === save results ====
|
204 |
+
save_results_to_file(img_list, all_results, console_args)
|
205 |
+
|
206 |
+
if console_args.extract and console_args.check:
|
207 |
+
validate_box_feat(model, all_results, device, console_args)
|
208 |
+
|
209 |
+
|
210 |
+
def process_image(image, folder_location):
|
211 |
+
global args
|
212 |
+
parser = argparse.ArgumentParser(description='Do dense captioning')
|
213 |
+
parser.add_argument('--config_json', type=str, help="path of the json file which stored model configuration")
|
214 |
+
parser.add_argument('--lut_path', type=str, default=f'{folder_location}CircumSpect/data/VG-regions-dicts-lite.pkl', help='look up table path')
|
215 |
+
parser.add_argument('--model_checkpoint', type=str, help="path of the trained model checkpoint")
|
216 |
+
parser.add_argument('--img_path', type=str, help="path of images, should be a file or a directory with only images")
|
217 |
+
parser.add_argument('--result_dir', type=str, default='.',
|
218 |
+
help="path of the directory to save the output file")
|
219 |
+
parser.add_argument('--box_per_img', type=int, default=100, help='max boxes to describe per image')
|
220 |
+
parser.add_argument('--batch_size', type=int, default=1, help="useful when img_path is a directory")
|
221 |
+
parser.add_argument('--extract', action='store_true', help='whether to extract features')
|
222 |
+
parser.add_argument('--cpu', action='store_true', help='whether use cpu to compute')
|
223 |
+
parser.add_argument('--verbose', action='store_true', help='whether output info')
|
224 |
+
parser.add_argument('--check', action='store_true', help='whether to validate box feat by regenerate sentences')
|
225 |
+
args = argparse.Namespace()
|
226 |
+
|
227 |
+
args.config_json = f'{folder_location}CircumSpect/model_params/train_all_val_all_bz_2_epoch_10_inject_init/config.json'
|
228 |
+
args.lut_path = f'{folder_location}CircumSpect/data/VG-regions-dicts-lite.pkl'
|
229 |
+
args.model_checkpoint = f'{folder_location}models/train_all_val_all_bz_2_epoch_10_inject_init.pth.tar'
|
230 |
+
args.img_path = image
|
231 |
+
args.result_dir = f'{folder_location}CircumSpect/'
|
232 |
+
args.box_per_img = 100
|
233 |
+
args.batch_size = 2
|
234 |
+
args.extract = False
|
235 |
+
args.cpu = False
|
236 |
+
args.verbose = True
|
237 |
+
args.check = False
|
238 |
+
|
239 |
+
main(args)
|
evaluate.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
from utils.data_loader import DenseCapDataset, DataLoaderPFG
|
5 |
+
from model.evaluator import DenseCapEvaluator
|
6 |
+
|
7 |
+
|
8 |
+
def quality_check(model, dataset, idx_to_token, device, max_iter=-1):
|
9 |
+
|
10 |
+
model.to(device)
|
11 |
+
data_loader = DataLoaderPFG(dataset, batch_size=1, shuffle=False, num_workers=1,
|
12 |
+
pin_memory=True, collate_fn=DenseCapDataset.collate_fn)
|
13 |
+
|
14 |
+
print('[quality check]')
|
15 |
+
for i, (img, targets, info) in enumerate(data_loader):
|
16 |
+
|
17 |
+
img = [img_tensor.to(device) for img_tensor in img]
|
18 |
+
targets = [{k: v.to(device) for k, v in target.items()} for target in targets]
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
model.eval()
|
22 |
+
model.return_features = False
|
23 |
+
detections = model(img)
|
24 |
+
|
25 |
+
for j in range(len(targets)):
|
26 |
+
print('<{}>'.format(info[j]['file_name']))
|
27 |
+
print('=== ground truth ===')
|
28 |
+
for box, cap, cap_len in zip(targets[j]['boxes'], targets[j]['caps'], targets[j]['caps_len']):
|
29 |
+
print('box:', box.tolist())
|
30 |
+
print('len:', cap_len.item())
|
31 |
+
print('cap:', ' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '<pad>'))
|
32 |
+
print('-'*20)
|
33 |
+
|
34 |
+
print('=== predict ===')
|
35 |
+
for box, cap, score in zip(detections[j]['boxes'], detections[j]['caps'], detections[j]['scores']):
|
36 |
+
print('box:', [round(c, 2) for c in box.tolist()])
|
37 |
+
print('score:', round(score.item(), 2))
|
38 |
+
print('cap:', ' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '<pad>'))
|
39 |
+
print('-'*20)
|
40 |
+
|
41 |
+
if i >= max_iter > 0:
|
42 |
+
break
|
43 |
+
|
44 |
+
|
45 |
+
def quantity_check(model, dataset, idx_to_token, device, max_iter=-1, verbose=True):
|
46 |
+
|
47 |
+
model.to(device)
|
48 |
+
data_loader = DataLoaderPFG(dataset, batch_size=4, shuffle=False, num_workers=2,
|
49 |
+
pin_memory=True, collate_fn=DenseCapDataset.collate_fn)
|
50 |
+
|
51 |
+
evaluator = DenseCapEvaluator(list(model.roi_heads.box_describer.special_idx.keys()))
|
52 |
+
|
53 |
+
print('[quantity check]')
|
54 |
+
for i, (img, targets, info) in tqdm(enumerate(data_loader), total=len(data_loader)):
|
55 |
+
|
56 |
+
img = [img_tensor.to(device) for img_tensor in img]
|
57 |
+
targets = [{k: v.to(device) for k, v in target.items()} for target in targets]
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
model.eval()
|
61 |
+
model.return_features = False
|
62 |
+
detections = model(img)
|
63 |
+
|
64 |
+
for j in range(len(targets)):
|
65 |
+
scores = detections[j]['scores']
|
66 |
+
boxes = detections[j]['boxes']
|
67 |
+
text = [' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '<pad>')
|
68 |
+
for cap in detections[j]['caps']]
|
69 |
+
target_boxes = targets[j]['boxes']
|
70 |
+
target_text = [' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '<pad>')
|
71 |
+
for cap in targets[j]['caps']]
|
72 |
+
img_id = info[j]['file_name']
|
73 |
+
|
74 |
+
evaluator.add_result(scores, boxes, text, target_boxes, target_text, img_id)
|
75 |
+
|
76 |
+
if i >= max_iter > 0:
|
77 |
+
break
|
78 |
+
|
79 |
+
results = evaluator.evaluate(verbose)
|
80 |
+
if verbose:
|
81 |
+
print('MAP: {:.3f} DET_MAP: {:.3f}'.format(results['map'], results['detmap']))
|
82 |
+
|
83 |
+
return results
|
faces.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import face_recognition
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import cv2
|
6 |
+
import os
|
7 |
+
|
8 |
+
with open('pwd.txt', 'r') as pwd:
|
9 |
+
folder_location = pwd.read()
|
10 |
+
|
11 |
+
def find_encodings(images_):
|
12 |
+
encode_list = []
|
13 |
+
for imgs in images_:
|
14 |
+
imgs = np.array(Image.open('./img/face_recognition/'+imgs))
|
15 |
+
imgs = cv2.cvtColor(imgs, cv2.COLOR_BGR2RGB)
|
16 |
+
encode = face_recognition.face_encodings(imgs)[0]
|
17 |
+
encode_list.append(encode)
|
18 |
+
return encode_list
|
19 |
+
|
20 |
+
def recognize_users(cap):
|
21 |
+
path = f'{folder_location}img/face_recognition'
|
22 |
+
recognized_users = [] # List to store names of recognized users
|
23 |
+
images = []
|
24 |
+
classNames = []
|
25 |
+
myList = os.listdir(path)
|
26 |
+
|
27 |
+
for cl in myList:
|
28 |
+
curImg = cv2.imread(f'{path}/{cl}')
|
29 |
+
images.append(curImg)
|
30 |
+
classNames.append(os.path.splitext(cl)[0])
|
31 |
+
try:
|
32 |
+
with open(f'{folder_location}models/face_rec', 'rb') as file:
|
33 |
+
encodeListKnown = pickle.load(file)
|
34 |
+
except:
|
35 |
+
path = f'{folder_location}img/face_recognition'
|
36 |
+
images = []
|
37 |
+
classNames = []
|
38 |
+
myList = os.listdir(path)
|
39 |
+
images = myList
|
40 |
+
|
41 |
+
encodeListKnown = find_encodings(images)
|
42 |
+
print(len(encodeListKnown))
|
43 |
+
print('Encoding Complete')
|
44 |
+
|
45 |
+
with open(f'{folder_location}models/face_rec', 'wb') as file:
|
46 |
+
pickle.dump(encodeListKnown, file)
|
47 |
+
file.close()
|
48 |
+
|
49 |
+
_, img = cap.read()
|
50 |
+
img = cv2.flip(img, 2)
|
51 |
+
imgS = cv2.resize(img, (0,0), None, 0.25, 0.25)
|
52 |
+
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
53 |
+
|
54 |
+
facesCurFrame = face_recognition.face_locations(imgS)
|
55 |
+
encodeCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
56 |
+
|
57 |
+
for encodeFace, faceLoc in zip(encodeCurFrame, facesCurFrame):
|
58 |
+
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
|
59 |
+
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
|
60 |
+
print(faceDis)
|
61 |
+
matchIndices = np.where(matches)[0] # Get indices of all matched faces
|
62 |
+
|
63 |
+
for matchIndex in matchIndices:
|
64 |
+
name = classNames[matchIndex].upper()
|
65 |
+
recognized_users.append(name) # Append recognized user to the list
|
66 |
+
print(name)
|
67 |
+
y1, x2, y2, x1 = faceLoc
|
68 |
+
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
|
69 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), (205, 154, 79), 2)
|
70 |
+
cv2.putText(img, name, (x1+6, y2-6), cv2.FONT_HERSHEY_COMPLEX, 0.7, (255, 255, 255), 2)
|
71 |
+
|
72 |
+
if not matchIndices.all():
|
73 |
+
name = "UNKNOWN"
|
74 |
+
print(name)
|
75 |
+
y1, x2, y2, x1 = faceLoc
|
76 |
+
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
|
77 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), (205, 154, 79))
|
78 |
+
cv2.putText(img, 'UNKNOWN', (x1+6, y2-6), cv2.FONT_HERSHEY_COMPLEX, 0.7, (255, 255, 255), 2)
|
79 |
+
|
80 |
+
# cv2.imshow("Face Recognition", img)
|
81 |
+
# cv2.waitKey(1)
|
82 |
+
|
83 |
+
return recognized_users, img
|
84 |
+
|