Commit
·
8490b86
1
Parent(s):
25c355e
Upload vqa.py
Browse files
vqa.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from torchvision.transforms.functional import InterpolationMode
|
6 |
+
from models.blip_vqa import blip_vqa
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import matplotlib.image as mpimg
|
10 |
+
|
11 |
+
from skimage import transform as skimage_transform
|
12 |
+
from scipy.ndimage import filters
|
13 |
+
from matplotlib import pyplot as plt
|
14 |
+
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from torch import nn
|
18 |
+
from torchvision import transforms
|
19 |
+
|
20 |
+
import json
|
21 |
+
import traceback
|
22 |
+
|
23 |
+
class VQA:
|
24 |
+
def __init__(self, model_path, image_size=480):
|
25 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
+
self.model = blip_vqa(pretrained=model_path, image_size=image_size, vit='base')
|
27 |
+
self.block_num = 9
|
28 |
+
self.model.eval()
|
29 |
+
self.model.text_encoder.base_model.base_model.encoder.layer[self.block_num].crossattention.self.save_attention = True
|
30 |
+
|
31 |
+
self.model = self.model.to(self.device)
|
32 |
+
def getAttMap(self, img, attMap, blur = True, overlap = True):
|
33 |
+
attMap -= attMap.min()
|
34 |
+
if attMap.max() > 0:
|
35 |
+
attMap /= attMap.max()
|
36 |
+
attMap = skimage_transform.resize(attMap, (img.shape[:2]), order = 3, mode = 'constant')
|
37 |
+
if blur:
|
38 |
+
attMap = filters.gaussian_filter(attMap, 0.02*max(img.shape[:2]))
|
39 |
+
attMap -= attMap.min()
|
40 |
+
attMap /= attMap.max()
|
41 |
+
cmap = plt.get_cmap('jet')
|
42 |
+
attMapV = cmap(attMap)
|
43 |
+
attMapV = np.delete(attMapV, 3, 2)
|
44 |
+
if overlap:
|
45 |
+
attMap = 1*(1-attMap**0.7).reshape(attMap.shape + (1,))*img + (attMap**0.7).reshape(attMap.shape+(1,)) * attMapV
|
46 |
+
return attMap
|
47 |
+
|
48 |
+
def gradcam(self, text_input, image_path, image):
|
49 |
+
mask = text_input.attention_mask.view(text_input.attention_mask.size(0),1,-1,1,1)
|
50 |
+
grads = self.model.text_encoder.base_model.base_model.encoder.layer[self.block_num].crossattention.self.get_attn_gradients()
|
51 |
+
cams = self.model.text_encoder.base_model.base_model.encoder.layer[self.block_num].crossattention.self.get_attention_map()
|
52 |
+
cams = cams[:, :, :, 1:].reshape(image.size(0), 12, -1, 30, 30) * mask
|
53 |
+
grads = grads[:, :, :, 1:].clamp(0).reshape(image.size(0), 12, -1, 30, 30) * mask
|
54 |
+
gradcam = cams * grads
|
55 |
+
gradcam = gradcam[0].mean(0).cpu().detach()
|
56 |
+
|
57 |
+
num_image = len(text_input.input_ids[0])
|
58 |
+
num_image -= 1
|
59 |
+
fig, ax = plt.subplots(num_image, 1, figsize=(15,15*num_image))
|
60 |
+
|
61 |
+
rgb_image = cv2.imread(image_path)[:, :, ::-1]
|
62 |
+
rgb_image = np.float32(rgb_image) / 255
|
63 |
+
ax[0].imshow(rgb_image)
|
64 |
+
ax[0].set_yticks([])
|
65 |
+
ax[0].set_xticks([])
|
66 |
+
ax[0].set_xlabel("Image")
|
67 |
+
|
68 |
+
for i,token_id in enumerate(text_input.input_ids[0][1:-1]):
|
69 |
+
word = self.model.tokenizer.decode([token_id])
|
70 |
+
gradcam_image = self.getAttMap(rgb_image, gradcam[i+1])
|
71 |
+
ax[i+1].imshow(gradcam_image)
|
72 |
+
ax[i+1].set_yticks([])
|
73 |
+
ax[i+1].set_xticks([])
|
74 |
+
ax[i+1].set_xlabel(word)
|
75 |
+
|
76 |
+
plt.show()
|
77 |
+
|
78 |
+
|
79 |
+
def load_demo_image(self, image_size, img_path, device):
|
80 |
+
raw_image = Image.open(img_path).convert('RGB')
|
81 |
+
w,h = raw_image.size
|
82 |
+
transform = transforms.Compose([
|
83 |
+
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
84 |
+
transforms.ToTensor(),
|
85 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
86 |
+
])
|
87 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
88 |
+
return raw_image, image
|
89 |
+
|
90 |
+
def vqa(self, img_path, question):
|
91 |
+
raw_image, image = self.load_demo_image(image_size=480, img_path=img_path, device=self.device)
|
92 |
+
answer, vl_output, que = self.model(image, question, mode='gradcam', inference='generate')
|
93 |
+
loss = vl_output[:,1].sum()
|
94 |
+
self.model.zero_grad()
|
95 |
+
loss.backward()
|
96 |
+
|
97 |
+
with torch.no_grad():
|
98 |
+
self.gradcam(que, img_path, image)
|
99 |
+
|
100 |
+
return answer[0]
|
101 |
+
|
102 |
+
def vqa_demo(self, image, question):
|
103 |
+
image_size = 480
|
104 |
+
transform = transforms.Compose([
|
105 |
+
transforms.ToPILImage(),
|
106 |
+
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
107 |
+
transforms.ToTensor(),
|
108 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
109 |
+
])
|
110 |
+
image = transform(image).unsqueeze(0).to(self.device)
|
111 |
+
answer = self.model(image, question, mode='inference', inference='generate')
|
112 |
+
|
113 |
+
return answer[0]
|
114 |
+
|
115 |
+
|
116 |
+
if __name__=="__main__":
|
117 |
+
if not len(sys.argv) == 3:
|
118 |
+
print('Format: python3 vqa.py <path_to_img> <question>')
|
119 |
+
print('Sample: python3 vqa.py sample.jpg "What is the color of the horse?"')
|
120 |
+
|
121 |
+
else:
|
122 |
+
model_path = 'checkpoints/model_base_vqa_capfilt_large.pth'
|
123 |
+
vqa_object = VQA(model_path=model_path)
|
124 |
+
img_path = sys.argv[1]
|
125 |
+
question = sys.argv[2]
|
126 |
+
answer = vqa_object.vqa(img_path, question)
|
127 |
+
print('Question: {} | Answer: {}'.format(question, answer))
|