import os import pickle import h5py import torch from torch.utils.data import Dataset import torchvision.transforms as transforms from PIL import Image class DenseCapDataset(Dataset): @staticmethod def collate_fn(batch): """Use in torch.utils.data.DataLoader """ return tuple(zip(*batch)) # as tuples instead of stacked tensors @staticmethod def get_transform(): """More complicated transform utils in torchvison/references/detection/transforms.py """ transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) return transform def __init__(self, img_dir_root, vg_data_path, look_up_tables_path, dataset_type=None, transform=None): assert dataset_type in {None, 'train', 'test', 'val'} super(DenseCapDataset, self).__init__() self.img_dir_root = img_dir_root self.vg_data_path = vg_data_path self.look_up_tables_path = look_up_tables_path self.dataset_type = dataset_type # if dataset_type is None, all data will be use self.transform = transform # === load data here ==== self.vg_data = h5py.File(vg_data_path, 'r') self.look_up_tables = pickle.load(open(look_up_tables_path, 'rb')) def set_dataset_type(self, dataset_type, verbose=True): assert dataset_type in {None, 'train', 'test', 'val'} if verbose: print('[DenseCapDataset]: {} switch to {}'.format(self.dataset_type, dataset_type)) self.dataset_type = dataset_type def __getitem__(self, idx): vg_idx = self.look_up_tables['split'][self.dataset_type][idx] if self.dataset_type else idx img_path = os.path.join(self.img_dir_root, self.look_up_tables['idx_to_directory'][vg_idx], self.look_up_tables['idx_to_filename'][vg_idx]) img = Image.open(img_path).convert("RGB") if self.transform is not None: img = self.transform(img) else: img = transforms.ToTensor()(img) first_box_idx = self.vg_data['img_to_first_box'][vg_idx] last_box_idx = self.vg_data['img_to_last_box'][vg_idx] boxes = torch.as_tensor(self.vg_data['boxes'][first_box_idx: last_box_idx+1], dtype=torch.float32) caps = torch.as_tensor(self.vg_data['captions'][first_box_idx: last_box_idx+1], dtype=torch.long) caps_len = torch.as_tensor(self.vg_data['lengths'][first_box_idx: last_box_idx+1], dtype=torch.long) targets = { 'boxes': boxes, 'caps': caps, 'caps_len': caps_len, } info = { 'idx': vg_idx, 'dir': self.look_up_tables['idx_to_directory'][vg_idx], 'file_name': self.look_up_tables['idx_to_filename'][vg_idx] } return img, targets, info def __len__(self): if self.dataset_type: return len(self.look_up_tables['split'][self.dataset_type]) else: return len(self.look_up_tables['filename_to_idx']) if __name__ == '__main__': IMG_DIR_ROOT = './data/visual-genome' VG_DATA_PATH = './data/VG-regions.h5' LOOK_UP_TABLES_PATH = './data/VG-regions-dicts.pkl' dcd = DenseCapDataset(IMG_DIR_ROOT, VG_DATA_PATH, LOOK_UP_TABLES_PATH) print('all', len(dcd)) print(dcd[0]) for data_type in {'train', 'test', 'val'}: dcd.set_dataset_type(data_type) print(data_type, len(dcd)) print(dcd[0])