import torch from tqdm import tqdm from utils.data_loader import DenseCapDataset, DataLoaderPFG from model.evaluator import DenseCapEvaluator def quality_check(model, dataset, idx_to_token, device, max_iter=-1): model.to(device) data_loader = DataLoaderPFG(dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=True, collate_fn=DenseCapDataset.collate_fn) print('[quality check]') for i, (img, targets, info) in enumerate(data_loader): img = [img_tensor.to(device) for img_tensor in img] targets = [{k: v.to(device) for k, v in target.items()} for target in targets] with torch.no_grad(): model.eval() model.return_features = False detections = model(img) for j in range(len(targets)): print('<{}>'.format(info[j]['file_name'])) print('=== ground truth ===') for box, cap, cap_len in zip(targets[j]['boxes'], targets[j]['caps'], targets[j]['caps_len']): print('box:', box.tolist()) print('len:', cap_len.item()) print('cap:', ' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '')) print('-'*20) print('=== predict ===') for box, cap, score in zip(detections[j]['boxes'], detections[j]['caps'], detections[j]['scores']): print('box:', [round(c, 2) for c in box.tolist()]) print('score:', round(score.item(), 2)) print('cap:', ' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '')) print('-'*20) if i >= max_iter > 0: break def quantity_check(model, dataset, idx_to_token, device, max_iter=-1, verbose=True): model.to(device) data_loader = DataLoaderPFG(dataset, batch_size=4, shuffle=False, num_workers=2, pin_memory=True, collate_fn=DenseCapDataset.collate_fn) evaluator = DenseCapEvaluator(list(model.roi_heads.box_describer.special_idx.keys())) print('[quantity check]') for i, (img, targets, info) in tqdm(enumerate(data_loader), total=len(data_loader)): img = [img_tensor.to(device) for img_tensor in img] targets = [{k: v.to(device) for k, v in target.items()} for target in targets] with torch.no_grad(): model.eval() model.return_features = False detections = model(img) for j in range(len(targets)): scores = detections[j]['scores'] boxes = detections[j]['boxes'] text = [' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '') for cap in detections[j]['caps']] target_boxes = targets[j]['boxes'] target_text = [' '.join(idx_to_token[idx] for idx in cap.tolist() if idx_to_token[idx] != '') for cap in targets[j]['caps']] img_id = info[j]['file_name'] evaluator.add_result(scores, boxes, text, target_boxes, target_text, img_id) if i >= max_iter > 0: break results = evaluator.evaluate(verbose) if verbose: print('MAP: {:.3f} DET_MAP: {:.3f}'.format(results['map'], results['detmap'])) return results