File size: 79,800 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
import os
import random
from collections import OrderedDict
from typing import Union, Literal, List, Optional

import numpy as np
from diffusers import T2IAdapter, AutoencoderTiny, ControlNetModel

import torch.functional as F
from safetensors.torch import load_file
from torch.utils.data import DataLoader, ConcatDataset

from toolkit import train_tools
from toolkit.basic import value_map, adain, get_mean_std
from toolkit.clip_vision_adapter import ClipVisionAdapter
from toolkit.config_modules import GuidanceConfig
from toolkit.data_loader import get_dataloader_datasets
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO, FileItemDTO
from toolkit.guidance import get_targeted_guidance_loss, get_guidance_loss, GuidanceType
from toolkit.image_utils import show_tensors, show_latents
from toolkit.ip_adapter import IPAdapter
from toolkit.custom_adapter import CustomAdapter
from toolkit.prompt_utils import PromptEmbeds, concat_prompt_embeds
from toolkit.reference_adapter import ReferenceAdapter
from toolkit.stable_diffusion_model import StableDiffusion, BlankNetwork
from toolkit.train_tools import get_torch_dtype, apply_snr_weight, add_all_snr_to_noise_scheduler, \
    apply_learnable_snr_gos, LearnableSNRGamma
import gc
import torch
from jobs.process import BaseSDTrainProcess
from torchvision import transforms
from diffusers import EMAModel
import math
from toolkit.train_tools import precondition_model_outputs_flow_match


def flush():
    torch.cuda.empty_cache()
    gc.collect()


adapter_transforms = transforms.Compose([
    transforms.ToTensor(),
])


class SDTrainer(BaseSDTrainProcess):

    def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
        super().__init__(process_id, job, config, **kwargs)
        self.assistant_adapter: Union['T2IAdapter', 'ControlNetModel', None]
        self.do_prior_prediction = False
        self.do_long_prompts = False
        self.do_guided_loss = False
        self.taesd: Optional[AutoencoderTiny] = None

        self._clip_image_embeds_unconditional: Union[List[str], None] = None
        self.negative_prompt_pool: Union[List[str], None] = None
        self.batch_negative_prompt: Union[List[str], None] = None

        self.scaler = torch.cuda.amp.GradScaler()

        self.is_bfloat = self.train_config.dtype == "bfloat16" or self.train_config.dtype == "bf16"

        self.do_grad_scale = True
        if self.is_fine_tuning:
            self.do_grad_scale = False
        if self.adapter_config is not None:
            if self.adapter_config.train:
                self.do_grad_scale = False

        if self.train_config.dtype in ["fp16", "float16"]:
            # patch the scaler to allow fp16 training
            org_unscale_grads = self.scaler._unscale_grads_
            def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
                return org_unscale_grads(optimizer, inv_scale, found_inf, True)
            self.scaler._unscale_grads_ = _unscale_grads_replacer


    def before_model_load(self):
        pass

    def before_dataset_load(self):
        self.assistant_adapter = None
        # get adapter assistant if one is set
        if self.train_config.adapter_assist_name_or_path is not None:
            adapter_path = self.train_config.adapter_assist_name_or_path

            if self.train_config.adapter_assist_type == "t2i":
                # dont name this adapter since we are not training it
                self.assistant_adapter = T2IAdapter.from_pretrained(
                    adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype)
                ).to(self.device_torch)
            elif self.train_config.adapter_assist_type == "control_net":
                self.assistant_adapter = ControlNetModel.from_pretrained(
                    adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype)
                ).to(self.device_torch, dtype=get_torch_dtype(self.train_config.dtype))
            else:
                raise ValueError(f"Unknown adapter assist type {self.train_config.adapter_assist_type}")

            self.assistant_adapter.eval()
            self.assistant_adapter.requires_grad_(False)
            flush()
        if self.train_config.train_turbo and self.train_config.show_turbo_outputs:
            if self.model_config.is_xl:
                self.taesd = AutoencoderTiny.from_pretrained("madebyollin/taesdxl",
                                                             torch_dtype=get_torch_dtype(self.train_config.dtype))
            else:
                self.taesd = AutoencoderTiny.from_pretrained("madebyollin/taesd",
                                                             torch_dtype=get_torch_dtype(self.train_config.dtype))
            self.taesd.to(dtype=get_torch_dtype(self.train_config.dtype), device=self.device_torch)
            self.taesd.eval()
            self.taesd.requires_grad_(False)

    def hook_before_train_loop(self):
        if self.train_config.do_prior_divergence:
            self.do_prior_prediction = True
        # move vae to device if we did not cache latents
        if not self.is_latents_cached:
            self.sd.vae.eval()
            self.sd.vae.to(self.device_torch)
        else:
            # offload it. Already cached
            self.sd.vae.to('cpu')
            flush()
        add_all_snr_to_noise_scheduler(self.sd.noise_scheduler, self.device_torch)
        if self.adapter is not None:
            self.adapter.to(self.device_torch)

            # check if we have regs and using adapter and caching clip embeddings
            has_reg = self.datasets_reg is not None and len(self.datasets_reg) > 0
            is_caching_clip_embeddings = self.datasets is not None and any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))])

            if has_reg and is_caching_clip_embeddings:
                # we need a list of unconditional clip image embeds from other datasets to handle regs
                unconditional_clip_image_embeds = []
                datasets = get_dataloader_datasets(self.data_loader)
                for i in range(len(datasets)):
                    unconditional_clip_image_embeds += datasets[i].clip_vision_unconditional_cache

                if len(unconditional_clip_image_embeds) == 0:
                    raise ValueError("No unconditional clip image embeds found. This should not happen")

                self._clip_image_embeds_unconditional = unconditional_clip_image_embeds

        if self.train_config.negative_prompt is not None:
            if os.path.exists(self.train_config.negative_prompt):
                with open(self.train_config.negative_prompt, 'r') as f:
                    self.negative_prompt_pool = f.readlines()
                    # remove empty
                    self.negative_prompt_pool = [x.strip() for x in self.negative_prompt_pool if x.strip() != ""]
            else:
                # single prompt
                self.negative_prompt_pool = [self.train_config.negative_prompt]

    def process_output_for_turbo(self, pred, noisy_latents, timesteps, noise, batch):
        # to process turbo learning, we make one big step from our current timestep to the end
        # we then denoise the prediction on that remaining step and target our loss to our target latents
        # this currently only works on euler_a (that I know of). Would work on others, but needs to be coded to do so.
        # needs to be done on each item in batch as they may all have different timesteps
        batch_size = pred.shape[0]
        pred_chunks = torch.chunk(pred, batch_size, dim=0)
        noisy_latents_chunks = torch.chunk(noisy_latents, batch_size, dim=0)
        timesteps_chunks = torch.chunk(timesteps, batch_size, dim=0)
        latent_chunks = torch.chunk(batch.latents, batch_size, dim=0)
        noise_chunks = torch.chunk(noise, batch_size, dim=0)

        with torch.no_grad():
            # set the timesteps to 1000 so we can capture them to calculate the sigmas
            self.sd.noise_scheduler.set_timesteps(
                self.sd.noise_scheduler.config.num_train_timesteps,
                device=self.device_torch
            )
            train_timesteps = self.sd.noise_scheduler.timesteps.clone().detach()

            train_sigmas = self.sd.noise_scheduler.sigmas.clone().detach()

            # set the scheduler to one timestep, we build the step and sigmas for each item in batch for the partial step
            self.sd.noise_scheduler.set_timesteps(
                1,
                device=self.device_torch
            )

        denoised_pred_chunks = []
        target_pred_chunks = []

        for i in range(batch_size):
            pred_item = pred_chunks[i]
            noisy_latents_item = noisy_latents_chunks[i]
            timesteps_item = timesteps_chunks[i]
            latents_item = latent_chunks[i]
            noise_item = noise_chunks[i]
            with torch.no_grad():
                timestep_idx = [(train_timesteps == t).nonzero().item() for t in timesteps_item][0]
                single_step_timestep_schedule = [timesteps_item.squeeze().item()]
                # extract the sigma idx for our midpoint timestep
                sigmas = train_sigmas[timestep_idx:timestep_idx + 1].to(self.device_torch)

                end_sigma_idx = random.randint(timestep_idx, len(train_sigmas) - 1)
                end_sigma = train_sigmas[end_sigma_idx:end_sigma_idx + 1].to(self.device_torch)

                # add noise to our target

                # build the big sigma step. The to step will now be to 0 giving it a full remaining denoising half step
                # self.sd.noise_scheduler.sigmas = torch.cat([sigmas, torch.zeros_like(sigmas)]).detach()
                self.sd.noise_scheduler.sigmas = torch.cat([sigmas, end_sigma]).detach()
                # set our single timstep
                self.sd.noise_scheduler.timesteps = torch.from_numpy(
                    np.array(single_step_timestep_schedule, dtype=np.float32)
                ).to(device=self.device_torch)

                # set the step index to None so it will be recalculated on first step
                self.sd.noise_scheduler._step_index = None

            denoised_latent = self.sd.noise_scheduler.step(
                pred_item, timesteps_item, noisy_latents_item.detach(), return_dict=False
            )[0]

            residual_noise = (noise_item * end_sigma.flatten()).detach().to(self.device_torch, dtype=get_torch_dtype(
                self.train_config.dtype))
            # remove the residual noise from the denoised latents. Output should be a clean prediction (theoretically)
            denoised_latent = denoised_latent - residual_noise

            denoised_pred_chunks.append(denoised_latent)

        denoised_latents = torch.cat(denoised_pred_chunks, dim=0)
        # set the scheduler back to the original timesteps
        self.sd.noise_scheduler.set_timesteps(
            self.sd.noise_scheduler.config.num_train_timesteps,
            device=self.device_torch
        )

        output = denoised_latents / self.sd.vae.config['scaling_factor']
        output = self.sd.vae.decode(output).sample

        if self.train_config.show_turbo_outputs:
            # since we are completely denoising, we can show them here
            with torch.no_grad():
                show_tensors(output)

        # we return our big partial step denoised latents as our pred and our untouched latents as our target.
        # you can do mse against the two here  or run the denoised through the vae for pixel space loss against the
        # input tensor images.

        return output, batch.tensor.to(self.device_torch, dtype=get_torch_dtype(self.train_config.dtype))

    # you can expand these in a child class to make customization easier
    def calculate_loss(
            self,
            noise_pred: torch.Tensor,
            noise: torch.Tensor,
            noisy_latents: torch.Tensor,
            timesteps: torch.Tensor,
            batch: 'DataLoaderBatchDTO',
            mask_multiplier: Union[torch.Tensor, float] = 1.0,
            prior_pred: Union[torch.Tensor, None] = None,
            **kwargs
    ):
        loss_target = self.train_config.loss_target
        is_reg = any(batch.get_is_reg_list())

        prior_mask_multiplier = None
        target_mask_multiplier = None
        dtype = get_torch_dtype(self.train_config.dtype)

        has_mask = batch.mask_tensor is not None

        with torch.no_grad():
            loss_multiplier = torch.tensor(batch.loss_multiplier_list).to(self.device_torch, dtype=torch.float32)

        if self.train_config.match_noise_norm:
            # match the norm of the noise
            noise_norm = torch.linalg.vector_norm(noise, ord=2, dim=(1, 2, 3), keepdim=True)
            noise_pred_norm = torch.linalg.vector_norm(noise_pred, ord=2, dim=(1, 2, 3), keepdim=True)
            noise_pred = noise_pred * (noise_norm / noise_pred_norm)

        if self.train_config.pred_scaler != 1.0:
            noise_pred = noise_pred * self.train_config.pred_scaler

        target = None

        if self.train_config.target_noise_multiplier != 1.0:
            noise = noise * self.train_config.target_noise_multiplier

        if self.train_config.correct_pred_norm or (self.train_config.inverted_mask_prior and prior_pred is not None and has_mask):
            if self.train_config.correct_pred_norm and not is_reg:
                with torch.no_grad():
                    # this only works if doing a prior pred
                    if prior_pred is not None:
                        prior_mean = prior_pred.mean([2,3], keepdim=True)
                        prior_std = prior_pred.std([2,3], keepdim=True)
                        noise_mean = noise_pred.mean([2,3], keepdim=True)
                        noise_std = noise_pred.std([2,3], keepdim=True)

                        mean_adjust = prior_mean - noise_mean
                        std_adjust = prior_std - noise_std

                        mean_adjust = mean_adjust * self.train_config.correct_pred_norm_multiplier
                        std_adjust = std_adjust * self.train_config.correct_pred_norm_multiplier

                        target_mean = noise_mean + mean_adjust
                        target_std = noise_std + std_adjust

                        eps = 1e-5
                        # match the noise to the prior
                        noise = (noise - noise_mean) / (noise_std + eps)
                        noise = noise * (target_std + eps) + target_mean
                        noise = noise.detach()

            if self.train_config.inverted_mask_prior and prior_pred is not None and has_mask:
                assert not self.train_config.train_turbo
                with torch.no_grad():
                    # we need to make the noise prediction be a masked blending of noise and prior_pred
                    stretched_mask_multiplier = value_map(
                        mask_multiplier,
                        batch.file_items[0].dataset_config.mask_min_value,
                        1.0,
                        0.0,
                        1.0
                    )

                    prior_mask_multiplier = 1.0 - stretched_mask_multiplier


                # target_mask_multiplier = mask_multiplier
                # mask_multiplier = 1.0
                target = noise
                # target = (noise * mask_multiplier) + (prior_pred * prior_mask_multiplier)
                # set masked multiplier to 1.0 so we dont double apply it
                # mask_multiplier = 1.0
        elif prior_pred is not None and not self.train_config.do_prior_divergence:
            assert not self.train_config.train_turbo
            # matching adapter prediction
            target = prior_pred
        elif self.sd.prediction_type == 'v_prediction':
            # v-parameterization training
            target = self.sd.noise_scheduler.get_velocity(batch.tensor, noise, timesteps)

        elif self.sd.is_flow_matching:
            target = (noise - batch.latents).detach()
        else:
            target = noise

        if target is None:
            target = noise

        pred = noise_pred

        if self.train_config.train_turbo:
            pred, target = self.process_output_for_turbo(pred, noisy_latents, timesteps, noise, batch)

        ignore_snr = False

        if loss_target == 'source' or loss_target == 'unaugmented':
            assert not self.train_config.train_turbo
            # ignore_snr = True
            if batch.sigmas is None:
                raise ValueError("Batch sigmas is None. This should not happen")

            # src https://github.com/huggingface/diffusers/blob/324d18fba23f6c9d7475b0ff7c777685f7128d40/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L1190
            denoised_latents = noise_pred * (-batch.sigmas) + noisy_latents
            weighing = batch.sigmas ** -2.0
            if loss_target == 'source':
                # denoise the latent and compare to the latent in the batch
                target = batch.latents
            elif loss_target == 'unaugmented':
                # we have to encode images into latents for now
                # we also denoise as the unaugmented tensor is not a noisy diffirental
                with torch.no_grad():
                    unaugmented_latents = self.sd.encode_images(batch.unaugmented_tensor).to(self.device_torch, dtype=dtype)
                    unaugmented_latents = unaugmented_latents * self.train_config.latent_multiplier
                    target = unaugmented_latents.detach()

                # Get the target for loss depending on the prediction type
                if self.sd.noise_scheduler.config.prediction_type == "epsilon":
                    target = target  # we are computing loss against denoise latents
                elif self.sd.noise_scheduler.config.prediction_type == "v_prediction":
                    target = self.sd.noise_scheduler.get_velocity(target, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {self.sd.noise_scheduler.config.prediction_type}")

            # mse loss without reduction
            loss_per_element = (weighing.float() * (denoised_latents.float() - target.float()) ** 2)
            loss = loss_per_element
        else:

            if self.train_config.loss_type == "mae":
                loss = torch.nn.functional.l1_loss(pred.float(), target.float(), reduction="none")
            else:
                loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none")

            # handle linear timesteps and only adjust the weight of the timesteps
            if self.sd.is_flow_matching and (self.train_config.linear_timesteps or self.train_config.linear_timesteps2):
                # calculate the weights for the timesteps
                timestep_weight = self.sd.noise_scheduler.get_weights_for_timesteps(
                    timesteps,
                    v2=self.train_config.linear_timesteps2
                ).to(loss.device, dtype=loss.dtype)
                timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach()
                loss = loss * timestep_weight

        if self.train_config.do_prior_divergence and prior_pred is not None:
            loss = loss + (torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none") * -1.0)

        if self.train_config.train_turbo:
            mask_multiplier = mask_multiplier[:, 3:, :, :]
            # resize to the size of the loss
            mask_multiplier = torch.nn.functional.interpolate(mask_multiplier, size=(pred.shape[2], pred.shape[3]), mode='nearest')

        # multiply by our mask
        loss = loss * mask_multiplier

        prior_loss = None
        if self.train_config.inverted_mask_prior and prior_pred is not None and prior_mask_multiplier is not None:
            assert not self.train_config.train_turbo
            if self.train_config.loss_type == "mae":
                prior_loss = torch.nn.functional.l1_loss(pred.float(), prior_pred.float(), reduction="none")
            else:
                prior_loss = torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none")

            prior_loss = prior_loss * prior_mask_multiplier * self.train_config.inverted_mask_prior_multiplier
            if torch.isnan(prior_loss).any():
                print("Prior loss is nan")
                prior_loss = None
            else:
                prior_loss = prior_loss.mean([1, 2, 3])
                # loss = loss + prior_loss
                # loss = loss + prior_loss
            # loss = loss + prior_loss
        loss = loss.mean([1, 2, 3])
        # apply loss multiplier before prior loss
        loss = loss * loss_multiplier
        if prior_loss is not None:
            loss = loss + prior_loss

        if not self.train_config.train_turbo:
            if self.train_config.learnable_snr_gos:
                # add snr_gamma
                loss = apply_learnable_snr_gos(loss, timesteps, self.snr_gos)
            elif self.train_config.snr_gamma is not None and self.train_config.snr_gamma > 0.000001 and not ignore_snr:
                # add snr_gamma
                loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.snr_gamma,
                                        fixed=True)
            elif self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001 and not ignore_snr:
                # add min_snr_gamma
                loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.min_snr_gamma)

        loss = loss.mean()

        # check for additional losses
        if self.adapter is not None and hasattr(self.adapter, "additional_loss") and self.adapter.additional_loss is not None:

            loss = loss + self.adapter.additional_loss.mean()
            self.adapter.additional_loss = None

        if self.train_config.target_norm_std:
            # seperate out the batch and channels
            pred_std = noise_pred.std([2, 3], keepdim=True)
            norm_std_loss = torch.abs(self.train_config.target_norm_std_value - pred_std).mean()
            loss = loss + norm_std_loss


        return loss

    def preprocess_batch(self, batch: 'DataLoaderBatchDTO'):
        return batch

    def get_guided_loss(
            self,
            noisy_latents: torch.Tensor,
            conditional_embeds: PromptEmbeds,
            match_adapter_assist: bool,
            network_weight_list: list,
            timesteps: torch.Tensor,
            pred_kwargs: dict,
            batch: 'DataLoaderBatchDTO',
            noise: torch.Tensor,
            unconditional_embeds: Optional[PromptEmbeds] = None,
            **kwargs
    ):
        loss = get_guidance_loss(
            noisy_latents=noisy_latents,
            conditional_embeds=conditional_embeds,
            match_adapter_assist=match_adapter_assist,
            network_weight_list=network_weight_list,
            timesteps=timesteps,
            pred_kwargs=pred_kwargs,
            batch=batch,
            noise=noise,
            sd=self.sd,
            unconditional_embeds=unconditional_embeds,
            scaler=self.scaler,
            **kwargs
        )

        return loss

    def get_guided_loss_targeted_polarity(
            self,
            noisy_latents: torch.Tensor,
            conditional_embeds: PromptEmbeds,
            match_adapter_assist: bool,
            network_weight_list: list,
            timesteps: torch.Tensor,
            pred_kwargs: dict,
            batch: 'DataLoaderBatchDTO',
            noise: torch.Tensor,
            **kwargs
    ):
        with torch.no_grad():
            # Perform targeted guidance (working title)
            dtype = get_torch_dtype(self.train_config.dtype)

            conditional_latents = batch.latents.to(self.device_torch, dtype=dtype).detach()
            unconditional_latents = batch.unconditional_latents.to(self.device_torch, dtype=dtype).detach()

            mean_latents = (conditional_latents + unconditional_latents) / 2.0

            unconditional_diff = (unconditional_latents - mean_latents)
            conditional_diff = (conditional_latents - mean_latents)

            # we need to determine the amount of signal and noise that would be present at the current timestep
            # conditional_signal = self.sd.add_noise(conditional_diff, torch.zeros_like(noise), timesteps)
            # unconditional_signal = self.sd.add_noise(torch.zeros_like(noise), unconditional_diff, timesteps)
            # unconditional_signal = self.sd.add_noise(unconditional_diff, torch.zeros_like(noise), timesteps)
            # conditional_blend = self.sd.add_noise(conditional_latents, unconditional_latents, timesteps)
            # unconditional_blend = self.sd.add_noise(unconditional_latents, conditional_latents, timesteps)

            # target_noise = noise + unconditional_signal

            conditional_noisy_latents = self.sd.add_noise(
                mean_latents,
                noise,
                timesteps
            ).detach()

            unconditional_noisy_latents = self.sd.add_noise(
                mean_latents,
                noise,
                timesteps
            ).detach()

            # Disable the LoRA network so we can predict parent network knowledge without it
            self.network.is_active = False
            self.sd.unet.eval()

            # Predict noise to get a baseline of what the parent network wants to do with the latents + noise.
            # This acts as our control to preserve the unaltered parts of the image.
            baseline_prediction = self.sd.predict_noise(
                latents=unconditional_noisy_latents.to(self.device_torch, dtype=dtype).detach(),
                conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype).detach(),
                timestep=timesteps,
                guidance_scale=1.0,
                **pred_kwargs  # adapter residuals in here
            ).detach()

            # double up everything to run it through all at once
            cat_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
            cat_latents = torch.cat([conditional_noisy_latents, conditional_noisy_latents], dim=0)
            cat_timesteps = torch.cat([timesteps, timesteps], dim=0)

            # since we are dividing the polarity from the middle out, we need to double our network
            # weights on training since the convergent point will be at half network strength

            negative_network_weights = [weight * -2.0 for weight in network_weight_list]
            positive_network_weights = [weight * 2.0 for weight in network_weight_list]
            cat_network_weight_list = positive_network_weights + negative_network_weights

            # turn the LoRA network back on.
            self.sd.unet.train()
            self.network.is_active = True

            self.network.multiplier = cat_network_weight_list

        # do our prediction with LoRA active on the scaled guidance latents
        prediction = self.sd.predict_noise(
            latents=cat_latents.to(self.device_torch, dtype=dtype).detach(),
            conditional_embeddings=cat_embeds.to(self.device_torch, dtype=dtype).detach(),
            timestep=cat_timesteps,
            guidance_scale=1.0,
            **pred_kwargs  # adapter residuals in here
        )

        pred_pos, pred_neg = torch.chunk(prediction, 2, dim=0)

        pred_pos = pred_pos - baseline_prediction
        pred_neg = pred_neg - baseline_prediction

        pred_loss = torch.nn.functional.mse_loss(
            pred_pos.float(),
            unconditional_diff.float(),
            reduction="none"
        )
        pred_loss = pred_loss.mean([1, 2, 3])

        pred_neg_loss = torch.nn.functional.mse_loss(
            pred_neg.float(),
            conditional_diff.float(),
            reduction="none"
        )
        pred_neg_loss = pred_neg_loss.mean([1, 2, 3])

        loss = (pred_loss + pred_neg_loss) / 2.0

        # loss = self.apply_snr(loss, timesteps)
        loss = loss.mean()
        loss.backward()

        # detach it so parent class can run backward on no grads without throwing error
        loss = loss.detach()
        loss.requires_grad_(True)

        return loss

    def get_guided_loss_masked_polarity(
            self,
            noisy_latents: torch.Tensor,
            conditional_embeds: PromptEmbeds,
            match_adapter_assist: bool,
            network_weight_list: list,
            timesteps: torch.Tensor,
            pred_kwargs: dict,
            batch: 'DataLoaderBatchDTO',
            noise: torch.Tensor,
            **kwargs
    ):
        with torch.no_grad():
            # Perform targeted guidance (working title)
            dtype = get_torch_dtype(self.train_config.dtype)

            conditional_latents = batch.latents.to(self.device_torch, dtype=dtype).detach()
            unconditional_latents = batch.unconditional_latents.to(self.device_torch, dtype=dtype).detach()
            inverse_latents = unconditional_latents - (conditional_latents - unconditional_latents)

            mean_latents = (conditional_latents + unconditional_latents) / 2.0

            # unconditional_diff = (unconditional_latents - mean_latents)
            # conditional_diff = (conditional_latents - mean_latents)

            # we need to determine the amount of signal and noise that would be present at the current timestep
            # conditional_signal = self.sd.add_noise(conditional_diff, torch.zeros_like(noise), timesteps)
            # unconditional_signal = self.sd.add_noise(torch.zeros_like(noise), unconditional_diff, timesteps)
            # unconditional_signal = self.sd.add_noise(unconditional_diff, torch.zeros_like(noise), timesteps)
            # conditional_blend = self.sd.add_noise(conditional_latents, unconditional_latents, timesteps)
            # unconditional_blend = self.sd.add_noise(unconditional_latents, conditional_latents, timesteps)

            # make a differential mask
            differential_mask = torch.abs(conditional_latents - unconditional_latents)
            max_differential = \
                differential_mask.max(dim=1, keepdim=True)[0].max(dim=2, keepdim=True)[0].max(dim=3, keepdim=True)[0]
            differential_scaler = 1.0 / max_differential
            differential_mask = differential_mask * differential_scaler
            spread_point = 0.1
            # adjust mask to amplify the differential at 0.1
            differential_mask = ((differential_mask - spread_point) * 10.0) + spread_point
            # clip it
            differential_mask = torch.clamp(differential_mask, 0.0, 1.0)

            # target_noise = noise + unconditional_signal

            conditional_noisy_latents = self.sd.add_noise(
                conditional_latents,
                noise,
                timesteps
            ).detach()

            unconditional_noisy_latents = self.sd.add_noise(
                unconditional_latents,
                noise,
                timesteps
            ).detach()

            inverse_noisy_latents = self.sd.add_noise(
                inverse_latents,
                noise,
                timesteps
            ).detach()

            # Disable the LoRA network so we can predict parent network knowledge without it
            self.network.is_active = False
            self.sd.unet.eval()

            # Predict noise to get a baseline of what the parent network wants to do with the latents + noise.
            # This acts as our control to preserve the unaltered parts of the image.
            # baseline_prediction = self.sd.predict_noise(
            #     latents=unconditional_noisy_latents.to(self.device_torch, dtype=dtype).detach(),
            #     conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype).detach(),
            #     timestep=timesteps,
            #     guidance_scale=1.0,
            #     **pred_kwargs  # adapter residuals in here
            # ).detach()

            # double up everything to run it through all at once
            cat_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
            cat_latents = torch.cat([conditional_noisy_latents, unconditional_noisy_latents], dim=0)
            cat_timesteps = torch.cat([timesteps, timesteps], dim=0)

            # since we are dividing the polarity from the middle out, we need to double our network
            # weights on training since the convergent point will be at half network strength

            negative_network_weights = [weight * -1.0 for weight in network_weight_list]
            positive_network_weights = [weight * 1.0 for weight in network_weight_list]
            cat_network_weight_list = positive_network_weights + negative_network_weights

            # turn the LoRA network back on.
            self.sd.unet.train()
            self.network.is_active = True

            self.network.multiplier = cat_network_weight_list

        # do our prediction with LoRA active on the scaled guidance latents
        prediction = self.sd.predict_noise(
            latents=cat_latents.to(self.device_torch, dtype=dtype).detach(),
            conditional_embeddings=cat_embeds.to(self.device_torch, dtype=dtype).detach(),
            timestep=cat_timesteps,
            guidance_scale=1.0,
            **pred_kwargs  # adapter residuals in here
        )

        pred_pos, pred_neg = torch.chunk(prediction, 2, dim=0)

        # create a loss to balance the mean to 0 between the two predictions
        differential_mean_pred_loss = torch.abs(pred_pos - pred_neg).mean([1, 2, 3]) ** 2.0

        # pred_pos = pred_pos - baseline_prediction
        # pred_neg = pred_neg - baseline_prediction

        pred_loss = torch.nn.functional.mse_loss(
            pred_pos.float(),
            noise.float(),
            reduction="none"
        )
        # apply mask
        pred_loss = pred_loss * (1.0 + differential_mask)
        pred_loss = pred_loss.mean([1, 2, 3])

        pred_neg_loss = torch.nn.functional.mse_loss(
            pred_neg.float(),
            noise.float(),
            reduction="none"
        )
        # apply inverse mask
        pred_neg_loss = pred_neg_loss * (1.0 - differential_mask)
        pred_neg_loss = pred_neg_loss.mean([1, 2, 3])

        # make a loss to balance to losses of the pos and neg so they are equal
        # differential_mean_loss_loss = torch.abs(pred_loss - pred_neg_loss)
        #
        # differential_mean_loss = differential_mean_pred_loss + differential_mean_loss_loss
        #
        # # add a multiplier to balancing losses to make them the top priority
        # differential_mean_loss = differential_mean_loss

        # remove the grads from the negative as it is only a balancing loss
        # pred_neg_loss = pred_neg_loss.detach()

        # loss = pred_loss + pred_neg_loss + differential_mean_loss
        loss = pred_loss + pred_neg_loss

        # loss = self.apply_snr(loss, timesteps)
        loss = loss.mean()
        loss.backward()

        # detach it so parent class can run backward on no grads without throwing error
        loss = loss.detach()
        loss.requires_grad_(True)

        return loss

    def get_prior_prediction(
            self,
            noisy_latents: torch.Tensor,
            conditional_embeds: PromptEmbeds,
            match_adapter_assist: bool,
            network_weight_list: list,
            timesteps: torch.Tensor,
            pred_kwargs: dict,
            batch: 'DataLoaderBatchDTO',
            noise: torch.Tensor,
            unconditional_embeds: Optional[PromptEmbeds] = None,
            conditioned_prompts=None,
            **kwargs
    ):
        # todo for embeddings, we need to run without trigger words
        was_unet_training = self.sd.unet.training
        was_network_active = False
        if self.network is not None:
            was_network_active = self.network.is_active
            self.network.is_active = False
        can_disable_adapter = False
        was_adapter_active = False
        if self.adapter is not None and (isinstance(self.adapter, IPAdapter) or
                                         isinstance(self.adapter, ReferenceAdapter) or
                                         (isinstance(self.adapter, CustomAdapter))
        ):
            can_disable_adapter = True
            was_adapter_active = self.adapter.is_active
            self.adapter.is_active = False

        # do a prediction here so we can match its output with network multiplier set to 0.0
        with torch.no_grad():
            dtype = get_torch_dtype(self.train_config.dtype)

            embeds_to_use = conditional_embeds.clone().detach()
            # handle clip vision adapter by removing triggers from prompt and replacing with the class name
            if (self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter)) or self.embedding is not None:
                prompt_list = batch.get_caption_list()
                class_name = ''

                triggers = ['[trigger]', '[name]']
                remove_tokens = []

                if self.embed_config is not None:
                    triggers.append(self.embed_config.trigger)
                    for i in range(1, self.embed_config.tokens):
                        remove_tokens.append(f"{self.embed_config.trigger}_{i}")
                    if self.embed_config.trigger_class_name is not None:
                        class_name = self.embed_config.trigger_class_name

                if self.adapter is not None:
                    triggers.append(self.adapter_config.trigger)
                    for i in range(1, self.adapter_config.num_tokens):
                        remove_tokens.append(f"{self.adapter_config.trigger}_{i}")
                    if self.adapter_config.trigger_class_name is not None:
                        class_name = self.adapter_config.trigger_class_name

                for idx, prompt in enumerate(prompt_list):
                    for remove_token in remove_tokens:
                        prompt = prompt.replace(remove_token, '')
                    for trigger in triggers:
                        prompt = prompt.replace(trigger, class_name)
                    prompt_list[idx] = prompt

                embeds_to_use = self.sd.encode_prompt(
                    prompt_list,
                    long_prompts=self.do_long_prompts).to(
                    self.device_torch,
                    dtype=dtype).detach()

            # dont use network on this
            # self.network.multiplier = 0.0
            self.sd.unet.eval()

            if self.adapter is not None and isinstance(self.adapter, IPAdapter) and not self.sd.is_flux:
                # we need to remove the image embeds from the prompt except for flux
                embeds_to_use: PromptEmbeds = embeds_to_use.clone().detach()
                end_pos = embeds_to_use.text_embeds.shape[1] - self.adapter_config.num_tokens
                embeds_to_use.text_embeds = embeds_to_use.text_embeds[:, :end_pos, :]
                if unconditional_embeds is not None:
                    unconditional_embeds = unconditional_embeds.clone().detach()
                    unconditional_embeds.text_embeds = unconditional_embeds.text_embeds[:, :end_pos]

            if unconditional_embeds is not None:
                unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach()

            prior_pred = self.sd.predict_noise(
                latents=noisy_latents.to(self.device_torch, dtype=dtype).detach(),
                conditional_embeddings=embeds_to_use.to(self.device_torch, dtype=dtype).detach(),
                unconditional_embeddings=unconditional_embeds,
                timestep=timesteps,
                guidance_scale=self.train_config.cfg_scale,
                rescale_cfg=self.train_config.cfg_rescale,
                **pred_kwargs  # adapter residuals in here
            )
            if was_unet_training:
                self.sd.unet.train()
            prior_pred = prior_pred.detach()
            # remove the residuals as we wont use them on prediction when matching control
            if match_adapter_assist and 'down_intrablock_additional_residuals' in pred_kwargs:
                del pred_kwargs['down_intrablock_additional_residuals']
            if match_adapter_assist and 'down_block_additional_residuals' in pred_kwargs:
                del pred_kwargs['down_block_additional_residuals']
            if match_adapter_assist and 'mid_block_additional_residual' in pred_kwargs:
                del pred_kwargs['mid_block_additional_residual']

            if can_disable_adapter:
                self.adapter.is_active = was_adapter_active
            # restore network
            # self.network.multiplier = network_weight_list
            if self.network is not None:
                self.network.is_active = was_network_active
        return prior_pred

    def before_unet_predict(self):
        pass

    def after_unet_predict(self):
        pass

    def end_of_training_loop(self):
        pass

    def predict_noise(
            self,
            noisy_latents: torch.Tensor,
            timesteps: Union[int, torch.Tensor] = 1,
            conditional_embeds: Union[PromptEmbeds, None] = None,
            unconditional_embeds: Union[PromptEmbeds, None] = None,
            **kwargs,
    ):
        dtype = get_torch_dtype(self.train_config.dtype)
        return self.sd.predict_noise(
            latents=noisy_latents.to(self.device_torch, dtype=dtype),
            conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
            unconditional_embeddings=unconditional_embeds,
            timestep=timesteps,
            guidance_scale=self.train_config.cfg_scale,
            detach_unconditional=False,
            rescale_cfg=self.train_config.cfg_rescale,
            **kwargs
        )

    def train_single_accumulation(self, batch: DataLoaderBatchDTO):
        self.timer.start('preprocess_batch')
        batch = self.preprocess_batch(batch)
        dtype = get_torch_dtype(self.train_config.dtype)
        # sanity check
        if self.sd.vae.dtype != self.sd.vae_torch_dtype:
            self.sd.vae = self.sd.vae.to(self.sd.vae_torch_dtype)
        if isinstance(self.sd.text_encoder, list):
            for encoder in self.sd.text_encoder:
                if encoder.dtype != self.sd.te_torch_dtype:
                    encoder.to(self.sd.te_torch_dtype)
        else:
            if self.sd.text_encoder.dtype != self.sd.te_torch_dtype:
                self.sd.text_encoder.to(self.sd.te_torch_dtype)

        noisy_latents, noise, timesteps, conditioned_prompts, imgs = self.process_general_training_batch(batch)
        if self.train_config.do_cfg or self.train_config.do_random_cfg:
            # pick random negative prompts
            if self.negative_prompt_pool is not None:
                negative_prompts = []
                for i in range(noisy_latents.shape[0]):
                    num_neg = random.randint(1, self.train_config.max_negative_prompts)
                    this_neg_prompts = [random.choice(self.negative_prompt_pool) for _ in range(num_neg)]
                    this_neg_prompt = ', '.join(this_neg_prompts)
                    negative_prompts.append(this_neg_prompt)
                self.batch_negative_prompt = negative_prompts
            else:
                self.batch_negative_prompt = ['' for _ in range(batch.latents.shape[0])]

        if self.adapter and isinstance(self.adapter, CustomAdapter):
            # condition the prompt
            # todo handle more than one adapter image
            self.adapter.num_control_images = 1
            conditioned_prompts = self.adapter.condition_prompt(conditioned_prompts)

        network_weight_list = batch.get_network_weight_list()
        if self.train_config.single_item_batching:
            network_weight_list = network_weight_list + network_weight_list

        has_adapter_img = batch.control_tensor is not None
        has_clip_image = batch.clip_image_tensor is not None
        has_clip_image_embeds = batch.clip_image_embeds is not None
        # force it to be true if doing regs as we handle those differently
        if any([batch.file_items[idx].is_reg for idx in range(len(batch.file_items))]):
            has_clip_image = True
            if self._clip_image_embeds_unconditional is not None:
                has_clip_image_embeds = True  # we are caching embeds, handle that differently
                has_clip_image = False

        if self.adapter is not None and isinstance(self.adapter, IPAdapter) and not has_clip_image and has_adapter_img:
            raise ValueError(
                "IPAdapter control image is now 'clip_image_path' instead of 'control_path'. Please update your dataset config ")

        match_adapter_assist = False

        # check if we are matching the adapter assistant
        if self.assistant_adapter:
            if self.train_config.match_adapter_chance == 1.0:
                match_adapter_assist = True
            elif self.train_config.match_adapter_chance > 0.0:
                match_adapter_assist = torch.rand(
                    (1,), device=self.device_torch, dtype=dtype
                ) < self.train_config.match_adapter_chance

        self.timer.stop('preprocess_batch')

        is_reg = False
        with torch.no_grad():
            loss_multiplier = torch.ones((noisy_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype)
            for idx, file_item in enumerate(batch.file_items):
                if file_item.is_reg:
                    loss_multiplier[idx] = loss_multiplier[idx] * self.train_config.reg_weight
                    is_reg = True

            adapter_images = None
            sigmas = None
            if has_adapter_img and (self.adapter or self.assistant_adapter):
                with self.timer('get_adapter_images'):
                    # todo move this to data loader
                    if batch.control_tensor is not None:
                        adapter_images = batch.control_tensor.to(self.device_torch, dtype=dtype).detach()
                        # match in channels
                        if self.assistant_adapter is not None:
                            in_channels = self.assistant_adapter.config.in_channels
                            if adapter_images.shape[1] != in_channels:
                                # we need to match the channels
                                adapter_images = adapter_images[:, :in_channels, :, :]
                    else:
                        raise NotImplementedError("Adapter images now must be loaded with dataloader")

            clip_images = None
            if has_clip_image:
                with self.timer('get_clip_images'):
                    # todo move this to data loader
                    if batch.clip_image_tensor is not None:
                        clip_images = batch.clip_image_tensor.to(self.device_torch, dtype=dtype).detach()

            mask_multiplier = torch.ones((noisy_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype)
            if batch.mask_tensor is not None:
                with self.timer('get_mask_multiplier'):
                    # upsampling no supported for bfloat16
                    mask_multiplier = batch.mask_tensor.to(self.device_torch, dtype=torch.float16).detach()
                    # scale down to the size of the latents, mask multiplier shape(bs, 1, width, height), noisy_latents shape(bs, channels, width, height)
                    mask_multiplier = torch.nn.functional.interpolate(
                        mask_multiplier, size=(noisy_latents.shape[2], noisy_latents.shape[3])
                    )
                    # expand to match latents
                    mask_multiplier = mask_multiplier.expand(-1, noisy_latents.shape[1], -1, -1)
                    mask_multiplier = mask_multiplier.to(self.device_torch, dtype=dtype).detach()

        def get_adapter_multiplier():
            if self.adapter and isinstance(self.adapter, T2IAdapter):
                # training a t2i adapter, not using as assistant.
                return 1.0
            elif match_adapter_assist:
                # training a texture. We want it high
                adapter_strength_min = 0.9
                adapter_strength_max = 1.0
            else:
                # training with assistance, we want it low
                # adapter_strength_min = 0.4
                # adapter_strength_max = 0.7
                adapter_strength_min = 0.5
                adapter_strength_max = 1.1

            adapter_conditioning_scale = torch.rand(
                (1,), device=self.device_torch, dtype=dtype
            )

            adapter_conditioning_scale = value_map(
                adapter_conditioning_scale,
                0.0,
                1.0,
                adapter_strength_min,
                adapter_strength_max
            )
            return adapter_conditioning_scale

        # flush()
        with self.timer('grad_setup'):

            # text encoding
            grad_on_text_encoder = False
            if self.train_config.train_text_encoder:
                grad_on_text_encoder = True

            if self.embedding is not None:
                grad_on_text_encoder = True

            if self.adapter and isinstance(self.adapter, ClipVisionAdapter):
                grad_on_text_encoder = True

            if self.adapter_config and self.adapter_config.type == 'te_augmenter':
                grad_on_text_encoder = True

            # have a blank network so we can wrap it in a context and set multipliers without checking every time
            if self.network is not None:
                network = self.network
            else:
                network = BlankNetwork()

            # set the weights
            network.multiplier = network_weight_list

        # activate network if it exits

        prompts_1 = conditioned_prompts
        prompts_2 = None
        if self.train_config.short_and_long_captions_encoder_split and self.sd.is_xl:
            prompts_1 = batch.get_caption_short_list()
            prompts_2 = conditioned_prompts

            # make the batch splits
        if self.train_config.single_item_batching:
            if self.model_config.refiner_name_or_path is not None:
                raise ValueError("Single item batching is not supported when training the refiner")
            batch_size = noisy_latents.shape[0]
            # chunk/split everything
            noisy_latents_list = torch.chunk(noisy_latents, batch_size, dim=0)
            noise_list = torch.chunk(noise, batch_size, dim=0)
            timesteps_list = torch.chunk(timesteps, batch_size, dim=0)
            conditioned_prompts_list = [[prompt] for prompt in prompts_1]
            if imgs is not None:
                imgs_list = torch.chunk(imgs, batch_size, dim=0)
            else:
                imgs_list = [None for _ in range(batch_size)]
            if adapter_images is not None:
                adapter_images_list = torch.chunk(adapter_images, batch_size, dim=0)
            else:
                adapter_images_list = [None for _ in range(batch_size)]
            if clip_images is not None:
                clip_images_list = torch.chunk(clip_images, batch_size, dim=0)
            else:
                clip_images_list = [None for _ in range(batch_size)]
            mask_multiplier_list = torch.chunk(mask_multiplier, batch_size, dim=0)
            if prompts_2 is None:
                prompt_2_list = [None for _ in range(batch_size)]
            else:
                prompt_2_list = [[prompt] for prompt in prompts_2]

        else:
            noisy_latents_list = [noisy_latents]
            noise_list = [noise]
            timesteps_list = [timesteps]
            conditioned_prompts_list = [prompts_1]
            imgs_list = [imgs]
            adapter_images_list = [adapter_images]
            clip_images_list = [clip_images]
            mask_multiplier_list = [mask_multiplier]
            if prompts_2 is None:
                prompt_2_list = [None]
            else:
                prompt_2_list = [prompts_2]

        for noisy_latents, noise, timesteps, conditioned_prompts, imgs, adapter_images, clip_images, mask_multiplier, prompt_2 in zip(
                noisy_latents_list,
                noise_list,
                timesteps_list,
                conditioned_prompts_list,
                imgs_list,
                adapter_images_list,
                clip_images_list,
                mask_multiplier_list,
                prompt_2_list
        ):

            # if self.train_config.negative_prompt is not None:
            #     # add negative prompt
            #     conditioned_prompts = conditioned_prompts + [self.train_config.negative_prompt for x in
            #                                                  range(len(conditioned_prompts))]
            #     if prompt_2 is not None:
            #         prompt_2 = prompt_2 + [self.train_config.negative_prompt for x in range(len(prompt_2))]

            with (network):
                # encode clip adapter here so embeds are active for tokenizer
                if self.adapter and isinstance(self.adapter, ClipVisionAdapter):
                    with self.timer('encode_clip_vision_embeds'):
                        if has_clip_image:
                            conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                                clip_images.detach().to(self.device_torch, dtype=dtype),
                                is_training=True,
                                has_been_preprocessed=True
                            )
                        else:
                            # just do a blank one
                            conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                                torch.zeros(
                                    (noisy_latents.shape[0], 3, 512, 512),
                                    device=self.device_torch, dtype=dtype
                                ),
                                is_training=True,
                                has_been_preprocessed=True,
                                drop=True
                            )
                        # it will be injected into the tokenizer when called
                        self.adapter(conditional_clip_embeds)

                # do the custom adapter after the prior prediction
                if self.adapter and isinstance(self.adapter, CustomAdapter) and has_clip_image:
                    quad_count = random.randint(1, 4)
                    self.adapter.train()
                    self.adapter.trigger_pre_te(
                        tensors_0_1=clip_images if not is_reg else None,  # on regs we send none to get random noise
                        is_training=True,
                        has_been_preprocessed=True,
                        quad_count=quad_count,
                        batch_size=noisy_latents.shape[0]
                    )

                with self.timer('encode_prompt'):
                    unconditional_embeds = None
                    if grad_on_text_encoder:
                        with torch.set_grad_enabled(True):
                            if isinstance(self.adapter, CustomAdapter):
                                self.adapter.is_unconditional_run = False
                            conditional_embeds = self.sd.encode_prompt(
                                conditioned_prompts, prompt_2,
                                dropout_prob=self.train_config.prompt_dropout_prob,
                                long_prompts=self.do_long_prompts).to(
                                self.device_torch,
                                dtype=dtype)

                            if self.train_config.do_cfg:
                                if isinstance(self.adapter, CustomAdapter):
                                    self.adapter.is_unconditional_run = True
                                # todo only do one and repeat it
                                unconditional_embeds = self.sd.encode_prompt(
                                    self.batch_negative_prompt,
                                    self.batch_negative_prompt,
                                    dropout_prob=self.train_config.prompt_dropout_prob,
                                    long_prompts=self.do_long_prompts).to(
                                    self.device_torch,
                                    dtype=dtype)
                                if isinstance(self.adapter, CustomAdapter):
                                    self.adapter.is_unconditional_run = False
                    else:
                        with torch.set_grad_enabled(False):
                            # make sure it is in eval mode
                            if isinstance(self.sd.text_encoder, list):
                                for te in self.sd.text_encoder:
                                    te.eval()
                            else:
                                self.sd.text_encoder.eval()
                            if isinstance(self.adapter, CustomAdapter):
                                self.adapter.is_unconditional_run = False
                            conditional_embeds = self.sd.encode_prompt(
                                conditioned_prompts, prompt_2,
                                dropout_prob=self.train_config.prompt_dropout_prob,
                                long_prompts=self.do_long_prompts).to(
                                self.device_torch,
                                dtype=dtype)
                            if self.train_config.do_cfg:
                                if isinstance(self.adapter, CustomAdapter):
                                    self.adapter.is_unconditional_run = True
                                unconditional_embeds = self.sd.encode_prompt(
                                    self.batch_negative_prompt,
                                    dropout_prob=self.train_config.prompt_dropout_prob,
                                    long_prompts=self.do_long_prompts).to(
                                    self.device_torch,
                                    dtype=dtype)
                                if isinstance(self.adapter, CustomAdapter):
                                    self.adapter.is_unconditional_run = False

                        # detach the embeddings
                        conditional_embeds = conditional_embeds.detach()
                        if self.train_config.do_cfg:
                            unconditional_embeds = unconditional_embeds.detach()

                # flush()
                pred_kwargs = {}

                if has_adapter_img:
                    if (self.adapter and isinstance(self.adapter, T2IAdapter)) or (
                            self.assistant_adapter and isinstance(self.assistant_adapter, T2IAdapter)):
                        with torch.set_grad_enabled(self.adapter is not None):
                            adapter = self.assistant_adapter if self.assistant_adapter is not None else self.adapter
                            adapter_multiplier = get_adapter_multiplier()
                            with self.timer('encode_adapter'):
                                down_block_additional_residuals = adapter(adapter_images)
                                if self.assistant_adapter:
                                    # not training. detach
                                    down_block_additional_residuals = [
                                        sample.to(dtype=dtype).detach() * adapter_multiplier for sample in
                                        down_block_additional_residuals
                                    ]
                                else:
                                    down_block_additional_residuals = [
                                        sample.to(dtype=dtype) * adapter_multiplier for sample in
                                        down_block_additional_residuals
                                    ]

                                pred_kwargs['down_intrablock_additional_residuals'] = down_block_additional_residuals

                if self.adapter and isinstance(self.adapter, IPAdapter):
                    with self.timer('encode_adapter_embeds'):
                        # number of images to do if doing a quad image
                        quad_count = random.randint(1, 4)
                        image_size = self.adapter.input_size
                        if has_clip_image_embeds:
                            # todo handle reg images better than this
                            if is_reg:
                                # get unconditional image embeds from cache
                                embeds = [
                                    load_file(random.choice(batch.clip_image_embeds_unconditional)) for i in
                                    range(noisy_latents.shape[0])
                                ]
                                conditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
                                    embeds,
                                    quad_count=quad_count
                                )

                                if self.train_config.do_cfg:
                                    embeds = [
                                        load_file(random.choice(batch.clip_image_embeds_unconditional)) for i in
                                        range(noisy_latents.shape[0])
                                    ]
                                    unconditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
                                        embeds,
                                        quad_count=quad_count
                                    )

                            else:
                                conditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
                                    batch.clip_image_embeds,
                                    quad_count=quad_count
                                )
                                if self.train_config.do_cfg:
                                    unconditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
                                        batch.clip_image_embeds_unconditional,
                                        quad_count=quad_count
                                    )
                        elif is_reg:
                            # we will zero it out in the img embedder
                            clip_images = torch.zeros(
                                (noisy_latents.shape[0], 3, image_size, image_size),
                                device=self.device_torch, dtype=dtype
                            ).detach()
                            # drop will zero it out
                            conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                                clip_images,
                                drop=True,
                                is_training=True,
                                has_been_preprocessed=False,
                                quad_count=quad_count
                            )
                            if self.train_config.do_cfg:
                                unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                                    torch.zeros(
                                        (noisy_latents.shape[0], 3, image_size, image_size),
                                        device=self.device_torch, dtype=dtype
                                    ).detach(),
                                    is_training=True,
                                    drop=True,
                                    has_been_preprocessed=False,
                                    quad_count=quad_count
                                )
                        elif has_clip_image:
                            conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                                clip_images.detach().to(self.device_torch, dtype=dtype),
                                is_training=True,
                                has_been_preprocessed=True,
                                quad_count=quad_count,
                                # do cfg on clip embeds to normalize the embeddings for when doing cfg
                                # cfg_embed_strength=3.0 if not self.train_config.do_cfg else None
                                # cfg_embed_strength=3.0 if not self.train_config.do_cfg else None
                            )
                            if self.train_config.do_cfg:
                                unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                                    clip_images.detach().to(self.device_torch, dtype=dtype),
                                    is_training=True,
                                    drop=True,
                                    has_been_preprocessed=True,
                                    quad_count=quad_count
                                )
                        else:
                            print("No Clip Image")
                            print([file_item.path for file_item in batch.file_items])
                            raise ValueError("Could not find clip image")

                    if not self.adapter_config.train_image_encoder:
                        # we are not training the image encoder, so we need to detach the embeds
                        conditional_clip_embeds = conditional_clip_embeds.detach()
                        if self.train_config.do_cfg:
                            unconditional_clip_embeds = unconditional_clip_embeds.detach()

                    with self.timer('encode_adapter'):
                        self.adapter.train()
                        conditional_embeds = self.adapter(
                            conditional_embeds.detach(),
                            conditional_clip_embeds,
                            is_unconditional=False
                        )
                        if self.train_config.do_cfg:
                            unconditional_embeds = self.adapter(
                                unconditional_embeds.detach(),
                                unconditional_clip_embeds,
                                is_unconditional=True
                            )
                        else:
                            # wipe out unconsitional
                            self.adapter.last_unconditional = None

                if self.adapter and isinstance(self.adapter, ReferenceAdapter):
                    # pass in our scheduler
                    self.adapter.noise_scheduler = self.lr_scheduler
                    if has_clip_image or has_adapter_img:
                        img_to_use = clip_images if has_clip_image else adapter_images
                        # currently 0-1 needs to be -1 to 1
                        reference_images = ((img_to_use - 0.5) * 2).detach().to(self.device_torch, dtype=dtype)
                        self.adapter.set_reference_images(reference_images)
                        self.adapter.noise_scheduler = self.sd.noise_scheduler
                    elif is_reg:
                        self.adapter.set_blank_reference_images(noisy_latents.shape[0])
                    else:
                        self.adapter.set_reference_images(None)

                prior_pred = None

                do_reg_prior = False
                # if is_reg and (self.network is not None or self.adapter is not None):
                #     # we are doing a reg image and we have a network or adapter
                #     do_reg_prior = True

                do_inverted_masked_prior = False
                if self.train_config.inverted_mask_prior and batch.mask_tensor is not None:
                    do_inverted_masked_prior = True

                do_correct_pred_norm_prior = self.train_config.correct_pred_norm

                do_guidance_prior = False

                if batch.unconditional_latents is not None:
                    # for this not that, we need a prior pred to normalize
                    guidance_type: GuidanceType = batch.file_items[0].dataset_config.guidance_type
                    if guidance_type == 'tnt':
                        do_guidance_prior = True

                if ((
                        has_adapter_img and self.assistant_adapter and match_adapter_assist) or self.do_prior_prediction or do_guidance_prior or do_reg_prior or do_inverted_masked_prior or self.train_config.correct_pred_norm):
                    with self.timer('prior predict'):
                        prior_pred = self.get_prior_prediction(
                            noisy_latents=noisy_latents,
                            conditional_embeds=conditional_embeds,
                            match_adapter_assist=match_adapter_assist,
                            network_weight_list=network_weight_list,
                            timesteps=timesteps,
                            pred_kwargs=pred_kwargs,
                            noise=noise,
                            batch=batch,
                            unconditional_embeds=unconditional_embeds,
                            conditioned_prompts=conditioned_prompts
                        )
                        if prior_pred is not None:
                            prior_pred = prior_pred.detach()

                # do the custom adapter after the prior prediction
                if self.adapter and isinstance(self.adapter, CustomAdapter) and has_clip_image:
                    quad_count = random.randint(1, 4)
                    self.adapter.train()
                    conditional_embeds = self.adapter.condition_encoded_embeds(
                        tensors_0_1=clip_images,
                        prompt_embeds=conditional_embeds,
                        is_training=True,
                        has_been_preprocessed=True,
                        quad_count=quad_count
                    )
                    if self.train_config.do_cfg and unconditional_embeds is not None:
                        unconditional_embeds = self.adapter.condition_encoded_embeds(
                            tensors_0_1=clip_images,
                            prompt_embeds=unconditional_embeds,
                            is_training=True,
                            has_been_preprocessed=True,
                            is_unconditional=True,
                            quad_count=quad_count
                        )

                if self.adapter and isinstance(self.adapter, CustomAdapter) and batch.extra_values is not None:
                    self.adapter.add_extra_values(batch.extra_values.detach())

                    if self.train_config.do_cfg:
                        self.adapter.add_extra_values(torch.zeros_like(batch.extra_values.detach()),
                                                      is_unconditional=True)

                if has_adapter_img:
                    if (self.adapter and isinstance(self.adapter, ControlNetModel)) or (
                            self.assistant_adapter and isinstance(self.assistant_adapter, ControlNetModel)):
                        if self.train_config.do_cfg:
                            raise ValueError("ControlNetModel is not supported with CFG")
                        with torch.set_grad_enabled(self.adapter is not None):
                            adapter: ControlNetModel = self.assistant_adapter if self.assistant_adapter is not None else self.adapter
                            adapter_multiplier = get_adapter_multiplier()
                            with self.timer('encode_adapter'):
                                # add_text_embeds is pooled_prompt_embeds for sdxl
                                added_cond_kwargs = {}
                                if self.sd.is_xl:
                                    added_cond_kwargs["text_embeds"] = conditional_embeds.pooled_embeds
                                    added_cond_kwargs['time_ids'] = self.sd.get_time_ids_from_latents(noisy_latents)
                                down_block_res_samples, mid_block_res_sample = adapter(
                                    noisy_latents,
                                    timesteps,
                                    encoder_hidden_states=conditional_embeds.text_embeds,
                                    controlnet_cond=adapter_images,
                                    conditioning_scale=1.0,
                                    guess_mode=False,
                                    added_cond_kwargs=added_cond_kwargs,
                                    return_dict=False,
                                )
                                pred_kwargs['down_block_additional_residuals'] = down_block_res_samples
                                pred_kwargs['mid_block_additional_residual'] = mid_block_res_sample

                self.before_unet_predict()
                # do a prior pred if we have an unconditional image, we will swap out the giadance later
                if batch.unconditional_latents is not None or self.do_guided_loss:
                    # do guided loss
                    loss = self.get_guided_loss(
                        noisy_latents=noisy_latents,
                        conditional_embeds=conditional_embeds,
                        match_adapter_assist=match_adapter_assist,
                        network_weight_list=network_weight_list,
                        timesteps=timesteps,
                        pred_kwargs=pred_kwargs,
                        batch=batch,
                        noise=noise,
                        unconditional_embeds=unconditional_embeds,
                        mask_multiplier=mask_multiplier,
                        prior_pred=prior_pred,
                    )

                else:
                    with self.timer('predict_unet'):
                        if unconditional_embeds is not None:
                            unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach()
                        noise_pred = self.predict_noise(
                            noisy_latents=noisy_latents.to(self.device_torch, dtype=dtype),
                            timesteps=timesteps,
                            conditional_embeds=conditional_embeds.to(self.device_torch, dtype=dtype),
                            unconditional_embeds=unconditional_embeds,
                            **pred_kwargs
                        )
                    self.after_unet_predict()

                    with self.timer('calculate_loss'):
                        noise = noise.to(self.device_torch, dtype=dtype).detach()
                        loss = self.calculate_loss(
                            noise_pred=noise_pred,
                            noise=noise,
                            noisy_latents=noisy_latents,
                            timesteps=timesteps,
                            batch=batch,
                            mask_multiplier=mask_multiplier,
                            prior_pred=prior_pred,
                        )
                # check if nan
                if torch.isnan(loss):
                    print("loss is nan")
                    loss = torch.zeros_like(loss).requires_grad_(True)

                with self.timer('backward'):
                    # todo we have multiplier seperated. works for now as res are not in same batch, but need to change
                    loss = loss * loss_multiplier.mean()
                    # IMPORTANT if gradient checkpointing do not leave with network when doing backward
                    # it will destroy the gradients. This is because the network is a context manager
                    # and will change the multipliers back to 0.0 when exiting. They will be
                    # 0.0 for the backward pass and the gradients will be 0.0
                    # I spent weeks on fighting this. DON'T DO IT
                    # with fsdp_overlap_step_with_backward():
                    # if self.is_bfloat:
                    # loss.backward()
                    # else:
                    if not self.do_grad_scale:
                        loss.backward()
                    else:
                        self.scaler.scale(loss).backward()

        return loss.detach()
        # flush()

    def hook_train_loop(self, batch: Union[DataLoaderBatchDTO, List[DataLoaderBatchDTO]]):
        if isinstance(batch, list):
            batch_list = batch
        else:
            batch_list = [batch]
        total_loss = None
        self.optimizer.zero_grad()
        for batch in batch_list:
            loss = self.train_single_accumulation(batch)
            if total_loss is None:
                total_loss = loss
            else:
                total_loss += loss
            if len(batch_list) > 1 and self.model_config.low_vram:
                torch.cuda.empty_cache()


        if not self.is_grad_accumulation_step:
            # fix this for multi params
            if self.train_config.optimizer != 'adafactor':
                if self.do_grad_scale:
                    self.scaler.unscale_(self.optimizer)
                if isinstance(self.params[0], dict):
                    for i in range(len(self.params)):
                        torch.nn.utils.clip_grad_norm_(self.params[i]['params'], self.train_config.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(self.params, self.train_config.max_grad_norm)
            # only step if we are not accumulating
            with self.timer('optimizer_step'):
                # self.optimizer.step()
                if not self.do_grad_scale:
                    self.optimizer.step()
                else:
                    self.scaler.step(self.optimizer)
                    self.scaler.update()

                self.optimizer.zero_grad(set_to_none=True)
                if self.adapter and isinstance(self.adapter, CustomAdapter):
                    self.adapter.post_weight_update()
            if self.ema is not None:
                with self.timer('ema_update'):
                    self.ema.update()
        else:
            # gradient accumulation. Just a place for breakpoint
            pass

        # TODO Should we only step scheduler on grad step? If so, need to recalculate last step
        with self.timer('scheduler_step'):
            self.lr_scheduler.step()

        if self.embedding is not None:
            with self.timer('restore_embeddings'):
                # Let's make sure we don't update any embedding weights besides the newly added token
                self.embedding.restore_embeddings()
        if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter):
            with self.timer('restore_adapter'):
                # Let's make sure we don't update any embedding weights besides the newly added token
                self.adapter.restore_embeddings()

        loss_dict = OrderedDict(
            {'loss': loss.item()}
        )

        self.end_of_training_loop()

        return loss_dict