File size: 6,173 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#based off https://github.com/catid/dora/blob/main/dora.py
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import TYPE_CHECKING, Union, List

from optimum.quanto import QBytesTensor, QTensor

from toolkit.network_mixins import ToolkitModuleMixin, ExtractableModuleMixin

if TYPE_CHECKING:
    from toolkit.lora_special import LoRASpecialNetwork

# diffusers specific stuff
LINEAR_MODULES = [
    'Linear',
    'LoRACompatibleLinear'
    # 'GroupNorm',
]
CONV_MODULES = [
    'Conv2d',
    'LoRACompatibleConv'
]

def transpose(weight, fan_in_fan_out):
    if not fan_in_fan_out:
        return weight

    if isinstance(weight, torch.nn.Parameter):
        return torch.nn.Parameter(weight.T)
    return weight.T

class DoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module):
    # def __init__(self, d_in, d_out, rank=4, weight=None, bias=None):
    def __init__(
            self,
            lora_name,
            org_module: torch.nn.Module,
            multiplier=1.0,
            lora_dim=4,
            alpha=1,
            dropout=None,
            rank_dropout=None,
            module_dropout=None,
            network: 'LoRASpecialNetwork' = None,
            use_bias: bool = False,
            **kwargs
    ):
        self.can_merge_in = False
        """if alpha == 0 or None, alpha is rank (no scaling)."""
        ToolkitModuleMixin.__init__(self, network=network)
        torch.nn.Module.__init__(self)
        self.lora_name = lora_name
        self.scalar = torch.tensor(1.0)

        self.lora_dim = lora_dim

        if org_module.__class__.__name__ in CONV_MODULES:
            raise NotImplementedError("Convolutional layers are not supported yet")

        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        # self.register_buffer("alpha", torch.tensor(alpha))  # 定数として扱える eng: treat as constant

        self.multiplier: Union[float, List[float]] = multiplier
        # wrap the original module so it doesn't get weights updated
        self.org_module = [org_module]
        self.dropout = dropout
        self.rank_dropout = rank_dropout
        self.module_dropout = module_dropout
        self.is_checkpointing = False

        d_out = org_module.out_features
        d_in = org_module.in_features

        std_dev = 1 / torch.sqrt(torch.tensor(self.lora_dim).float())
        # self.lora_up = nn.Parameter(torch.randn(d_out, self.lora_dim) * std_dev)  # lora_A
        # self.lora_down = nn.Parameter(torch.zeros(self.lora_dim, d_in))  # lora_B
        self.lora_up = nn.Linear(self.lora_dim, d_out, bias=False)  # lora_B
        # self.lora_up.weight.data = torch.randn_like(self.lora_up.weight.data) * std_dev
        self.lora_up.weight.data = torch.zeros_like(self.lora_up.weight.data)
        # self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False)
        # self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False)
        self.lora_down = nn.Linear(d_in, self.lora_dim, bias=False)  # lora_A
        # self.lora_down.weight.data = torch.zeros_like(self.lora_down.weight.data)
        self.lora_down.weight.data = torch.randn_like(self.lora_down.weight.data) * std_dev

        # m = Magnitude column-wise across output dimension
        weight = self.get_orig_weight()
        weight = weight.to(self.lora_up.weight.device, dtype=self.lora_up.weight.dtype)
        lora_weight  = self.lora_up.weight @ self.lora_down.weight
        weight_norm = self._get_weight_norm(weight, lora_weight)
        self.magnitude = nn.Parameter(weight_norm.detach().clone(), requires_grad=True)

    def apply_to(self):
        self.org_forward = self.org_module[0].forward
        self.org_module[0].forward = self.forward
        # del self.org_module

    def get_orig_weight(self):
        weight = self.org_module[0].weight
        if isinstance(weight, QTensor) or isinstance(weight, QBytesTensor):
            return weight.dequantize().data.detach()
        else:
            return weight.data.detach()

    def get_orig_bias(self):
        if hasattr(self.org_module[0], 'bias') and self.org_module[0].bias is not None:
            return self.org_module[0].bias.data.detach()
        return None

    # def dora_forward(self, x, *args, **kwargs):
    #     lora = torch.matmul(self.lora_A, self.lora_B)
    #     adapted = self.get_orig_weight() + lora
    #     column_norm = adapted.norm(p=2, dim=0, keepdim=True)
    #     norm_adapted = adapted / column_norm
    #     calc_weights = self.magnitude * norm_adapted
    #     return F.linear(x, calc_weights, self.get_orig_bias())

    def _get_weight_norm(self, weight, scaled_lora_weight) -> torch.Tensor:
        # calculate L2 norm of weight matrix, column-wise
        weight = weight + scaled_lora_weight.to(weight.device)
        weight_norm = torch.linalg.norm(weight, dim=1)
        return weight_norm

    def apply_dora(self, x, scaled_lora_weight):
        # ref https://github.com/huggingface/peft/blob/1e6d1d73a0850223b0916052fd8d2382a90eae5a/src/peft/tuners/lora/layer.py#L192
        # lora weight is already scaled

        # magnitude = self.lora_magnitude_vector[active_adapter]
        weight = self.get_orig_weight()
        weight = weight.to(scaled_lora_weight.device, dtype=scaled_lora_weight.dtype)
        weight_norm = self._get_weight_norm(weight, scaled_lora_weight)
        # see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
        # "[...] we suggest treating ||V +∆V ||_c in
        # Eq. (5) as a constant, thereby detaching it from the gradient
        # graph. This means that while ||V + ∆V ||_c dynamically
        # reflects the updates of ∆V , it won’t receive any gradient
        # during backpropagation"
        weight_norm = weight_norm.detach()
        dora_weight = transpose(weight + scaled_lora_weight, False)
        return (self.magnitude / weight_norm - 1).view(1, -1) * F.linear(x.to(dora_weight.dtype), dora_weight)