File size: 9,029 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math
import weakref

import torch
import torch.nn as nn
from typing import TYPE_CHECKING, List, Dict, Any
from toolkit.models.clip_fusion import ZipperBlock
from toolkit.models.zipper_resampler import ZipperModule, ZipperResampler
import sys
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)
from ipadapter.ip_adapter.resampler import  Resampler
from collections import OrderedDict

if TYPE_CHECKING:
    from toolkit.lora_special import LoRAModule
    from toolkit.stable_diffusion_model import StableDiffusion


class TransformerBlock(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, batch_first=True)
        self.cross_attn = nn.MultiheadAttention(d_model, nhead, batch_first=True)
        self.feed_forward = nn.Sequential(
            nn.Linear(d_model, dim_feedforward),
            nn.ReLU(),
            nn.Linear(dim_feedforward, d_model)
        )
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)

    def forward(self, x, cross_attn_input):
        # Self-attention
        attn_output, _ = self.self_attn(x, x, x)
        x = self.norm1(x + attn_output)

        # Cross-attention
        cross_attn_output, _ = self.cross_attn(x, cross_attn_input, cross_attn_input)
        x = self.norm2(x + cross_attn_output)

        # Feed-forward
        ff_output = self.feed_forward(x)
        x = self.norm3(x + ff_output)

        return x


class InstantLoRAMidModule(torch.nn.Module):
    def __init__(
            self,
            index: int,
            lora_module: 'LoRAModule',
            instant_lora_module: 'InstantLoRAModule',
            up_shape: list = None,
            down_shape: list = None,
    ):
        super(InstantLoRAMidModule, self).__init__()
        self.up_shape = up_shape
        self.down_shape = down_shape
        self.index = index
        self.lora_module_ref = weakref.ref(lora_module)
        self.instant_lora_module_ref = weakref.ref(instant_lora_module)

        self.embed = None

    def down_forward(self, x, *args, **kwargs):
        # get the embed
        self.embed = self.instant_lora_module_ref().img_embeds[self.index]
        down_size = math.prod(self.down_shape)
        down_weight = self.embed[:, :down_size]

        batch_size = x.shape[0]

        # unconditional
        if down_weight.shape[0] * 2 == batch_size:
            down_weight = torch.cat([down_weight] * 2, dim=0)

        weight_chunks = torch.chunk(down_weight, batch_size, dim=0)
        x_chunks = torch.chunk(x, batch_size, dim=0)

        x_out = []
        for i in range(batch_size):
            weight_chunk = weight_chunks[i]
            x_chunk = x_chunks[i]
            # reshape
            weight_chunk = weight_chunk.view(self.down_shape)
            # check if is conv or linear
            if len(weight_chunk.shape) == 4:
                padding = 0
                if weight_chunk.shape[-1] == 3:
                    padding = 1
                x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding)
            else:
                # run a simple linear layer with the down weight
                x_chunk = x_chunk @ weight_chunk.T
            x_out.append(x_chunk)
        x = torch.cat(x_out, dim=0)
        return x


    def up_forward(self, x, *args, **kwargs):
        self.embed = self.instant_lora_module_ref().img_embeds[self.index]
        up_size = math.prod(self.up_shape)
        up_weight = self.embed[:, -up_size:]

        batch_size = x.shape[0]

        # unconditional
        if up_weight.shape[0] * 2 == batch_size:
            up_weight = torch.cat([up_weight] * 2, dim=0)

        weight_chunks = torch.chunk(up_weight, batch_size, dim=0)
        x_chunks = torch.chunk(x, batch_size, dim=0)

        x_out = []
        for i in range(batch_size):
            weight_chunk = weight_chunks[i]
            x_chunk = x_chunks[i]
            # reshape
            weight_chunk = weight_chunk.view(self.up_shape)
            # check if is conv or linear
            if len(weight_chunk.shape) == 4:
                padding = 0
                if weight_chunk.shape[-1] == 3:
                    padding = 1
                x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding)
            else:
                # run a simple linear layer with the down weight
                x_chunk = x_chunk @ weight_chunk.T
            x_out.append(x_chunk)
        x = torch.cat(x_out, dim=0)
        return x


# Initialize the network
# num_blocks = 8
# d_model = 1024  # Adjust as needed
# nhead = 16  # Adjust as needed
# dim_feedforward = 4096  # Adjust as needed
# latent_dim = 1695744

class LoRAFormer(torch.nn.Module):
    def __init__(
            self,
            num_blocks,
            d_model=1024,
            nhead=16,
            dim_feedforward=4096,
            sd: 'StableDiffusion'=None,
    ):
        super(LoRAFormer, self).__init__()
        # self.linear = torch.nn.Linear(2, 1)
        self.sd_ref = weakref.ref(sd)
        self.dim = sd.network.lora_dim

        # stores the projection vector. Grabbed by modules
        self.img_embeds: List[torch.Tensor] = None

        # disable merging in. It is slower on inference
        self.sd_ref().network.can_merge_in = False

        self.ilora_modules = torch.nn.ModuleList()

        lora_modules = self.sd_ref().network.get_all_modules()

        output_size = 0

        self.embed_lengths = []
        self.weight_mapping = []

        for idx, lora_module in enumerate(lora_modules):
            module_dict = lora_module.state_dict()
            down_shape = list(module_dict['lora_down.weight'].shape)
            up_shape = list(module_dict['lora_up.weight'].shape)

            self.weight_mapping.append([lora_module.lora_name, [down_shape, up_shape]])

            module_size = math.prod(down_shape) + math.prod(up_shape)
            output_size += module_size
            self.embed_lengths.append(module_size)


            # add a new mid module that will take the original forward and add a vector to it
            # this will be used to add the vector to the original forward
            instant_module = InstantLoRAMidModule(
                idx,
                lora_module,
                self,
                up_shape=up_shape,
                down_shape=down_shape
            )

            self.ilora_modules.append(instant_module)

            # replace the LoRA forwards
            lora_module.lora_down.forward = instant_module.down_forward
            lora_module.lora_up.forward = instant_module.up_forward


        self.output_size = output_size

        self.latent = nn.Parameter(torch.randn(1, output_size))
        self.latent_proj = nn.Linear(output_size, d_model)
        self.blocks = nn.ModuleList([
            TransformerBlock(d_model, nhead, dim_feedforward)
            for _ in range(num_blocks)
        ])
        self.final_proj = nn.Linear(d_model, output_size)

        self.migrate_weight_mapping()

    def migrate_weight_mapping(self):
        return
        # # changes the names of the modules to common ones
        # keymap = self.sd_ref().network.get_keymap()
        # save_keymap = {}
        # if keymap is not None:
        #     for ldm_key, diffusers_key in keymap.items():
        #         #  invert them
        #         save_keymap[diffusers_key] = ldm_key
        #
        #     new_keymap = {}
        #     for key, value in self.weight_mapping:
        #         if key in save_keymap:
        #             new_keymap[save_keymap[key]] = value
        #         else:
        #             print(f"Key {key} not found in keymap")
        #             new_keymap[key] = value
        #     self.weight_mapping = new_keymap
        # else:
        #     print("No keymap found. Using default names")
        #     return


    def forward(self, img_embeds):
        # expand token rank if only rank 2
        if len(img_embeds.shape) == 2:
            img_embeds = img_embeds.unsqueeze(1)

        # resample the image embeddings
        img_embeds = self.resampler(img_embeds)
        img_embeds = self.proj_module(img_embeds)
        if len(img_embeds.shape) == 3:
            # merge the heads
            img_embeds = img_embeds.mean(dim=1)

        self.img_embeds = []
        # get all the slices
        start = 0
        for length in self.embed_lengths:
            self.img_embeds.append(img_embeds[:, start:start+length])
            start += length


    def get_additional_save_metadata(self) -> Dict[str, Any]:
        # save the weight mapping
        return {
            "weight_mapping": self.weight_mapping,
            "num_heads": self.num_heads,
            "vision_hidden_size": self.vision_hidden_size,
            "head_dim": self.head_dim,
            "vision_tokens": self.vision_tokens,
            "output_size": self.output_size,
        }